scholarly journals Мodel of h-polarized wave propagation in a multilayer dielectric structure

2021 ◽  
Vol 2021 (1) ◽  
pp. 84-91
Author(s):  
P.I. Zabolotnyi ◽  

This paper addresses the determination of the dielectric constant of multilayer dielectric structures. One of the most-used methods for determining the dielectric constant of multilayer structures is reflection coefficient measurement by interferometry. In the general case, in interferometry measurements to one measured value of the reflection coefficient there may correspond an infinity of dielectric constants. This ambiguity may be resolved by first determining the effect of different parameters of the probing electromagnetic wave on the reflection coefficient. In particular, it is important to have a preliminary estimate of the effect of the incidence angle and the polarization on the range of variation of the reflection coefficient with the variation of one of the structure parameters. This allows one to estimate the boundaries of the range of variation of the reflection coefficient with the variation of the parameter under study. This paper considers the case where a plane H-polarized electromagnetic wave, i.e. a wave whose magnetic field is perpendicular to the incidence plane, is incident on a multilayer dielectric structure. The aim of this work is to develop a model of the propagation of an H-polarized electromagnetic wave through a multilayer dielectric structure at an arbitrary incidence angle and to determine the range of variation of the reflection coefficient with the variation of the dielectric constants of the layers. The paper presents a model of the propagation of an H-polarized electromagnetic wave in a two-layer dielectric structure. A metal base, which is an ideal conductor, underlies the structure. The electromagnetic wave is incident from the air at an arbitrary incidence angle. The model allows one to estimate the reflection coefficient of the structure as a function of its parameters and the incidence angle. The model also makes it possible to analytically estimate the range of variation of the reflection coefficient with the variation of the dielectric constant and the thickness of each layer of the structure. Using the model, the magnitude of the reflection coefficient was determined as a function of the incidence angle and the dielectric constant of the second layer.

2021 ◽  
Vol 2021 (3) ◽  
pp. 111-118
Author(s):  
P.I. Zabolotnyi ◽  

This paper addresses the determination of the dielectric constant of multilayer dielectric structures by radiowave interferometry. In the general case, in interferometry measurements to one measured value of the reflection coefficient there may correspond an infinity of dielectric constants. This ambiguity may be resolved by first determining the effect of different parameters of the probing electromagnetic wave on the reflection coefficient. In particular, it is important to have a preliminary estimate of the effect of the incidence angle and the polarization on the range of variation of the reflection coefficient with the variation of one of the structure parameters. This paper considers the case where a plane E-polarized electromagnetic wave, i.e. a wave whose magnetic field is perpendicular to the incidence plane, is incident on a multilayer dielectric structure. The aim of this work is to develop a model of the propagation of an E-polarized electromagnetic wave through a multilayer dielectric structure at an arbitrary incidence angle and to determine the range of variation of the reflection coefficient with the variation of the dielectric constants of the layers. The paper presents a model of the propagation of an E-polarized electromagnetic wave in a two-layer dielectric structure. A metal base, which is an ideal conductor, underlies the structure. The electromagnetic wave is incident from the air at an arbitrary incidence angle. Based on the model, a method is proposed for measuring the relative dielectric constant and the dielectric loss tangent. It is shown that at a normal incidence the reflection coefficient magnitude is the same both for H- and E-polarization. Because of this, determining the relative dielectric constant and the loss tangent from the measured reflection coefficient magnitude calls for measurements not only at a normal incidence, but also at an oblique incidence, at which the reflection coefficient magnitudes will be different for H- and E-polarization.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4869
Author(s):  
Zhi-Hang Wang ◽  
Jin-Yu Xu ◽  
Er-Lei Bai ◽  
Liang-Xue Nie

The formula describing the relationship between the dielectric constant of a composite and the dielectric constants or volume rates of its components is called a dielectric model. The establishment of a cement concrete dielectric model is the basic and key technique for applying electromagnetic wave technology to concrete structure quality testing and internal damage detection. To construct the dielectric model of carbon nanofiber reinforced concrete, the carbon nanofiber reinforced concrete was measured by the transmission and reflection method for dielectric constant ε, and ε,, in the frequency range of 1.7~2.6 GHz as the fiber content was 0, 0.1%, 0.2%, 0.3% and 0.5%. Meanwhile, concrete was considered as a composite material composed of three phases, matrix (mortar), coarse aggregate (limestone gravel) and air, and the dielectric constants and volume rates of each component phase were tested. The Brown model, CRIM (Complex Refractive Index Model) model and Looyenga model commonly used in composite materials were modified based on the experimental data, suitable dielectric models of carbon nanofiber reinforced concrete were constructed, and a reliability check and error analysis of the modified models were carried out. The results showed that the goodness of fit between the calculated curves based on the three modified models and the measured curves was very high, the accuracy and applicability were very strong and the variation rule for the dielectric constant of carbon nanofiber concrete with the frequency of electromagnetic wave could be described accurately. For ε, and ε,,, the error between the dielectric constant calculated by the three modified models and the corresponding measured values was very small. For the dielectric constant ε,, the average error was maintained below 1.2%, and the minimum error was only 0.35%; for the dielectric constant ε,,, the average error was maintained below 3.55%.


2020 ◽  
pp. 59-63
Author(s):  
A.S. Bondarenko ◽  
A.S. Borovkov ◽  
I.M. Malay ◽  
V.A. Semyonov

The analysis of the current state of the reflection coefficient measurements in waveguides at millimeter waves is carried out. An approach for solving the problem of reproducing the reflection coefficient measurement scale is proposed. Mathematical equations, which are the basis of the reflection coefficient measurement equation are obtained. The method of determining the metrological performance of reflection coefficient unit’s reference standards is developed. The results of electrodynamic modeling and analytical calculations by the developed method are compared. It is shown that this method can be used for reproducing the reflection coefficient unit in the development of the State primary standard.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5179-5181
Author(s):  
Sayantan Mondal ◽  
Biman Bagchi

Neglects of inherent anisotropy and distinct dielectric boundaries may lead to completely erroneous results. We demonstrate that such mistakes can give rise to gross underestimation of the static dielectric constant of cylindrically nanoconfined water.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350057 ◽  
Author(s):  
HSIU-YA TASI ◽  
CHAOYUAN ZHU

Dielectric constants and Seebeck coefficients for semiconductor materials are studied by thermodynamic method plus ab initio quantum density functional theory (DFT). A single molecule which is formed in semiconductor material is treated in gas phase with molecular boundary condition and then electronic polarizability is directly calculated through Mulliken and atomic polar tensor (APT) density charges in the presence of the external electric field. This electronic polarizability can be converted to dielectric constant for solid material through the Clausius–Mossotti formula. Seebeck coefficient is first simulated in gas phase by thermodynamic method and then its value divided by its dielectric constant is regarded as Seebeck coefficient for solid materials. Furthermore, unit cell of semiconductor material is calculated with periodic boundary condition and its solid structure properties such as lattice constant and band gap are obtained. In this way, proper DFT function and basis set are selected to simulate electronic polarizability directly and Seebeck coefficient through chemical potential. Three semiconductor materials Mg 2 Si , β- FeSi 2 and SiGe are extensively tested by DFT method with B3LYP, BLYP and M05 functionals, and dielectric constants simulated by the present method are in good agreement with experimental values. Seebeck coefficients simulated by the present method are in reasonable good agreement with experiments and temperature dependence of Seebeck coefficients basically follows experimental results as well. The present method works much better than the conventional energy band structure theory for Seebeck coefficients of three semiconductors mentioned above. Simulation with periodic boundary condition can be generalized directly to treat with doped semiconductor in near future.


1898 ◽  
Vol 62 (379-387) ◽  
pp. 250-266 ◽  

In several previous communications we have described the investigations made by us on the dielectric constants of various frozen organic bodies and electrolytes at very low temperatures. In these researches we employed a method for the measurement of the dielectric constant which consisted in charging and discharging a condenser, having the given body as dielectric, through a galvanometer 120 times in a second by means of a tuning-fork interrupter. During the past summer we have repeated some of these determinations and used a different method of measurement and a rather higher frequency. In the experiments here described we have adopted Nernst’s method for the measurement of dielectric constants, using for this purpose the apparatus as arranged by Dr. Nernst which belongs to the Davy-Faraday Laboratory.


Sign in / Sign up

Export Citation Format

Share Document