scholarly journals Biotechnology of Newly Created Bacterial Composition for Siloing Based on Lactic Acid Bacteria

2021 ◽  
Vol 83 (6) ◽  
pp. 20-31
Author(s):  
S.G. Danylenko ◽  
◽  
O.V. Naumenko ◽  
A.S. Onishchenko ◽  
S.M. Teterina ◽  
...  

Peculiarities of high-quality silage production are the use of biological products based on lactic acid bacteria. The composition of such starters varies greatly according to the use of bacterial cultures, so among the starters available on the market, the range of their effectiveness is also different. It is very common to use a one-sided approach to the choice of bacterial components, which in combination with imperfect production technology have low preservative activity. The study of combined preparations, which combine homo- and heterofermentative types of lactic acid fermentation, allows to stabilize the preservative properties throughout the ensiling time, and increase the aerobic stability of the silage after access of oxygen. Aim. Development of biotechnology of bacterial preparation for corn ensiling, optimization of cultivation conditions of newly created bacterial composition, and selection of cryoprotectants for its lyophilization. Methods. The combined preparation was created on the basis of heterofermentative strain Lactobacillus buchneri 3806 combining it in two- and three-strain compositions with other representatives of lactic acid bacteria, which are characterized by obligate homofermentative and facultative heterofermentative types of metabolism. Optimization of the environment and technological parameters was carried out using a central-compositional plan, further statistical analysis of the obtained data and determination of optimal values of input parameters according to the created mathematical model of optical density response. The effectiveness of the selected protective media was tested for the survival of bacteria after lyophilization. Results. The most effective bacterial composition was found during experiments: L. buchneri 3806, Enterococcus faecium C-8-12, L. plantarum 3216. The effectiveness of the obtained composition was tested by laboratory silage of corn. Tests of the drug based on the selected bacterial composition showed an improvement in the chemical composition of the silage compared to the untreated control and treated only with monoculture L. buchneri 3806, namely: there was a decrease in dry matter loss by 2.21% and 2.04%, 22 due to the increase of lactic acid content, and increase of aerobic stability of silage – 341 h against 57 h of the control sample, and 313 h in case of using monoculture. For the obtained bacterial composition, the culture medium of the following composition was optimized: base (hydrolyzed milk with the addition of the following components: monosubstituted potassium phosphate – 2 g/L; 5-aqueous manganese sulfate – 0.05 g/L; 7-aqueous magnesium sulfate – 0.2 g/L; twin-80 – 1.0 g/L); glucose – 19.7 g/L; yeast extract – 7.8 g/L; corn extract – 23.6 g/L; peptone – 9.1 g/L; sodium citrate – 6.6 g/L; sodium acetate – 3,4 g/L. Cultivation of the bacterial composition on an optimized medium made it possible to obtain the maximum biomass yield, at which the optical density was 2.01 units, which is almost twice as much as the value obtained by culturing the same composition in MRS medium. The optimal technological parameters of culturing the bacterial composition were established, namely the best growth was observed at a temperature of 36.4±0.4°C with constant maintenance of the pH value in the culture medium at the level of 6.5±0.1 units. In addition, the optimal composition of the protective medium containing sodium citrate, sucrose and agar was selected, and ensures the survival rate of lactic acid bacteria 98.4% after lyophilization. Conclusions. The newly formed bacterial composition can be used for the production of preparations for corn silage, and tested on other raw materials, in particular on some perennial legumes (alfalfa, clover), and the conditions of its production can be used to scale the technology.

2017 ◽  
Vol 11 (2) ◽  
Author(s):  
N. Tregub ◽  
A. Zykov ◽  
L. Kapreluants

The article describes the role of selenium in the humankind being. The analysis based on the published data shows that the biological synthesis is a perspective way to obtain an organic form of selenium, which can be used in dietary supplements. The ability of lactic acid bacteria (Lactobacillus acidophilus 412/307)to accumulate inorganic forms of selenium (selenites, selenates), turning them into organic forms, with purposeful trace element enrichment of culture medium is described in the article. The main organic forms of selenium, which are being used in the process of biotransformation from its inorganic forms by microorganisms, have been reorganized. The relationship between the increasing of concentrations of sodium selenite in the culture medium and the growth of biomass of lactic acid bacteria was established. It was found the depressing effect of increasing concentrations of sodium selenite on optical density rate. It was estabilished the optimal conditions for the maximum accumulation of selenium containing culture of lactic acid bacteria. The influence of selenium concentration on the lactic acid bacteria biomass accumulation was determined also by changing the values of optical density. Due to the obtained data, the selenium containing dietary supplement «Selenolakt» was created. The main microbiological indicators that characterize the quality of the obtained product are given. The content of organic form of selenium in products reaches –195 ± 1 mkg/g.


Author(s):  
Ana Ruiz de la Bastida ◽  
Ángela Peirotén ◽  
Susana Langa ◽  
Juan Luis Arqués ◽  
José Mª. Landete

2007 ◽  
Vol 70 (9) ◽  
pp. 2155-2160 ◽  
Author(s):  
VINCENZO DEL PRETE ◽  
HECTOR RODRIGUEZ ◽  
ALFONSO V. CARRASCOSA ◽  
BLANCA de las RIVAS ◽  
EMILIA GARCIA-MORUNO ◽  
...  

A study was carried out to determine the in vitro interaction between ochratoxin A (OTA) and wine lactic acid bacteria (LAB). Fifteen strains belonging to five relevant oenological LAB species were grown in liquid synthetic culture medium containing OTA. The portion of OTA removed during the bacterial growth was 8 to 28%. The OTA removed from the supernatants was partially recovered (31 to 57%) from the bacterial pellet. Cell-free extracts of three representative strains were produced by disrupting cells in a French pressure cell. The ability of crude cell-free extracts to degrade OTA was studied. OTA was not degraded by cell-free extracts of wine LAB strains, and no degradation products of OTA were detected in the high-performance liquid chromatograms of the methanol extract of the bacterial pellet. On the basis of these results, we conclude that OTA removal by wine LAB is a cell-binding phenomenon. The chemistry and the molecular basis of OTA binding to wine LAB remains unknown.


2019 ◽  
Vol 74 (4) ◽  
pp. 596-612 ◽  
Author(s):  
Alexandre Bernardi ◽  
Carla J. Härter ◽  
Antonio W. L. Silva ◽  
Ricardo A. Reis ◽  
Carlos H. S. Rabelo

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1432
Author(s):  
Horst Auerbach ◽  
Peter Theobald

Whole-crop rye harvested before maturity represents a valuable forage for silage production. Due to the scarcity of data on fermentation characteristics and aerobic stability (ASTA) and the lack of information on mycotoxin formation during aeration of early-cut rye (ECR) silage after silo opening, we evaluated the effects of different additive types and compositions. Wilted forage was treated with various biological and chemical additives, ensiled in 1.5-L glass jars and stored for 64 days. Fermentation pattern, yeast and mould counts and ASTA were determined at silo opening. In total 34 mycotoxins were analysed in wilted forage and in silage before and after 240 h of air exposure. Chemical additives caused the lowest dry matter (DM) losses during fermentation accompanied with the lowest ethanol production and the highest water-soluble carbohydrate concentration. Aerobic deterioration, which started within two days after silo opening in silage left untreated and inoculated with homofermentative lactic acid bacteria, was prevented by the combined use of hetero- and homofermentative lactic acid bacteria and the chemical additive containing sodium nitrite, hexamethylene tetramine and potassium sorbate. Moreover, these two additives largely restricted the formation of the mycotoxin roquefortine C to < 0.05 mg kg−1 DM after aeration, whereas untreated silage contained 85.2 mg kg−1 DM.


2014 ◽  
Vol 70 (2) ◽  
pp. 308-323 ◽  
Author(s):  
B. F. Carvalho ◽  
C. L. S. Ávila ◽  
M. G. C. P. Miguel ◽  
J. C. Pinto ◽  
M. C. Santos ◽  
...  

2011 ◽  
Vol 27 (4) ◽  
pp. 1551-1561
Author(s):  
B. Dinic ◽  
N. Djordjevic ◽  
J. Radovic ◽  
D. Terzic ◽  
B. Andjelkovic ◽  
...  

Modern trends in legumes ensilaging technology are based on the knowledge of biomass from the aspect of suitability for ensilaging, wilting, addition of carbohydrate feed, use of biological additives, etc. Today, the experiments are conducted, worldwide, with inoculates, which, in addition to homofermentative, also contain heterofermentative lactic acid bacteria. Products of such inoculants contribute to the increase of aerobic stability of silages so their implementation is good for all types of silage. In addition to the usage of those additions, modern technology of silage is based on the maximum mechanization of the ensilaging process, as well as preparing the silage in the form of roto-bales and silo tubes (most inexpensive way of conservation) as well as permanent facilities.


2019 ◽  
Vol 7 (1-2) ◽  
pp. 127-132
Author(s):  
Judit Peter Szucs ◽  
Agnes Suli ◽  
Timea Suli Zakar ◽  
Elizabet Berecz ◽  
Mate Pek

The object of the trial was to study the effect of some lactic acid bacteria strains on the fermentation and aerobic stability of whole plant maize silages.The whole plant maize raw material was 32% DM, in soft cheddar stage of grain ripeness. It was ensiled in 4.2 litre capacity glass micro-size silos in 5 replicates /each treatment and stored on constant air conditioned room temperature (22 oC) during 95 days. The average packing density of raw material was 211 kg DM/m3.The applied treatments: 1. Untreated control maize, 2. Enterococcus faecium 100,000 CFU/g fresh maize (FM), 3. Lactobacillus plantarum 50,000 CFU/g FM + Enterococcus faecium 50,000 CFU/g FM, 4. Lactococcus lactis 100,000 CFU/g FM, 5. Lactobacillus plantarum 50,000 CFU/g FM + Lactococcus lactis 50,000 CFU/g FM, 6. Lactobacillus plantarum 100,000 CFU/g FM.Aerobic stability study:  Applied Honig (1990 system).The main experiences are the following: Applied lactic acid bacteria strains improved the quality of fermentation of maize in general compare to untreated control one.Lactic acid bacteria strains significantly stimulated lactic acid production and decreased propionic and butyric acid production. The origin of ammonia decreased also under influence of lactic acid bacteria strains in unaerobic conditions.Enterococcus faecium and.Lactococcus lactis are not able to protect the maize silages against the aerobic deterioration with the applied dosage.  Lactobacillus plantarum itself produced the most favourable fermentation characteristics and protected the aerobic stability of silage the most effectively (during 4 day) compare to all other treated maize silages.


Sign in / Sign up

Export Citation Format

Share Document