scholarly journals SIMULATION OF MOBILE ROBOT CLAMPING MAGNETS BY CIRCLE-FIELD METHOD

2021 ◽  
Vol 2021 (3) ◽  
pp. 58-64
Author(s):  
O.O. Cherno ◽  
◽  
O.S. Gerasin ◽  
A.M. Topalov ◽  
D.K. Stakanov ◽  
...  

Abstract There are a list of complicated tasks need to be solved to increase the working productivity and decrease working cost in modern shipbuilding and ship repair. Good results in solving those problems are shown whether automation with varied robots implementation. The mobile robots able to move and perform given technological operations on different-spaced ferromagnetic surfaces are equipped with own control systems, movers and clamping devices. Usually, reliability and safety of such robots are in direct dependence on designers’ adequate representation of their behavior that is described by mathematical description of separate parts or the robot in the whole to correct control problem solving. The article amply considers the process of the climbing mobile robot clamping electromagnet simulation model building using the improved circle-field method on the example of BR-65/30 clamping electromagnet. The model is built on the basis of interpolated dependences of flux coupling and electromagnetic force on the magnetomotive force and the value of the air gap obtained by numerical calculations of the magnetic field. The dynamic properties of the electromagnet are investigated and a family of its traction characteristics is obtained by the developed model, which can be used for automatic control of the robot clamping device. References 25, figures 5, tables 3.

2014 ◽  
Vol 1030-1032 ◽  
pp. 1588-1591 ◽  
Author(s):  
Zong Sheng Wu ◽  
Wei Ping Fu

The ability of a mobile robot to plan its path is the key task in the field of robotics, which is to find a shortest, collision free, optimal path in the various scenes. In this paper, different existing path planning methods are presented, and classified as: geometric construction method, artificial intelligent path planning method, grid method, and artificial potential field method. This paper briefly introduces the basic ideas of the four methods and compares them. Some challenging topics are presented based on the reviewed papers.


2021 ◽  
Vol 1037 ◽  
pp. 141-147
Author(s):  
Andrey Minaev ◽  
Juri Korovkin ◽  
Hammat Valiev ◽  
G.V. Stepanov ◽  
Dmitry Yu. Borin

Experimental studies magnetorheological elastomer specimens dynamic properties under the magnetic fields action on the vibrostend are carried out. Amplitude-frequency characteristics have been obtained. The magnetic field effect on the silicone magnetoreactive elastomers deformation properties and damping coefficients experimentally is established.


2018 ◽  
Vol 67 ◽  
pp. 105-117 ◽  
Author(s):  
Xiaokuo Kou ◽  
Manling Dong ◽  
Fan Yang ◽  
Sheng Han ◽  
Ke Zhang ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4031 ◽  
Author(s):  
Cirtoaje ◽  
Petrescu

This article aims to study the impact of carbon nanotube dispersions in liquid crystals. A theoretical model for the system’s dynamics is presented, considering the elastic continuum theory and a planar alignment of liquid crystal molecules on the nanotube’s surface. Experimental calculation of the relaxation times in the magnetic field was made for two cases: when the field was switched on (τon), and when it was switched off (τoff). The results indicate an increase of the relaxation time by about 25% when the magnetic field was switched off, and a smaller increase (about 10%) when the field was switched on, where both were in good agreement with the theoretical values.


2015 ◽  
Vol 15 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Wenbai Chen ◽  
Xibao Wu ◽  
Yang Lu

Abstract To solve the problem of local minima and unreachable destination of the traditional artificial potential field method in mobile robot path planning, chaos optimization is introduced to improve the artificial potential field method. The potential field function was adopted as a target function of chaos optimization, and a kind of “two-stage” chaos optimization was used. The corresponding movement step and direction of the robot were achieved by chaos search. Comparison of the improved method proposed in this paper and the traditional artificial potential field method is performed by simulation. The simulation results show that the improved method gets rid of the drawbacks, such as local minima and unreachable goal. Furthermore, the improved method is also verified by building up a physical platform based on “Future Star” robot. The success of the physical experiment indicates that the improved algorithm is feasible and efficient for mobile robot path planning.


2014 ◽  
Vol 20 (10) ◽  
pp. 1976-1979
Author(s):  
Bayanjargal Baasandorj ◽  
Aamir Reyaz ◽  
Deok Jin Lee ◽  
Kil To Chong

Sign in / Sign up

Export Citation Format

Share Document