scholarly journals In situ Composites: A Review

2021 ◽  
Vol 22 (1) ◽  
pp. 58-77
Author(s):  
O. V. Movchan ◽  
K. O. Chornoivanenko

The review of the works on the fabrication-technology studies, patterns of structure formation, and properties of in situ composites is presented. The main advantage of in situ (natural) composites is the thermodynamic stability of their composition and the coherence (conjugation) of the lattices of the contacting phases. All these ones provide the composite with a high level of the physical and mechanical properties. As shown, composite materials of this type are formed in the process of directed phase transformations, such as eutectic crystallization, eutectoid decomposition, etc., caused by a temperature gradient, as well as a result of diffusional changes in composition. The conditions for the growth of in situ composites are formulated. The mechanisms of growth of composite structures of the eutectic type are considered. The factors influencing on the morphology of structures of the eutectic type are indicated. The considered technological methods make it possible to obtain materials with predetermined properties, in which the size, volumetric composition, and spatial arrangement of phases are characteristic of in situ composites. The paper provides a large number of examples of in situ composites: from low-melting Bi-based alloys to refractory eutectics based on Mo and W (Bi–MnBi, Cd–Zn, Al–Al3Ni, Al–Al4La, Al–Al10CaFe2, Al–Al9FeNi, Al–Al3Zr, Al–Al3Sc, Au–Co, Si–TaSi2, Cr–HfC, Cr–ZrC, Cr–NbC, Cr–NbC, Cr–TaC, Nb–Nb5Si3, Mo–ZrC, Mo–HfC, W–TiC, W–ZrC, W–HfC, etc.). Processes and aspects of structure formation are considered. The influence of additional doping on the structure and properties of composite materials of the eutectic type of binary systems, as well as the features of the structure formation of ternary colonies in the composite are considered.

2012 ◽  
Vol 182-183 ◽  
pp. 180-184 ◽  
Author(s):  
Wen Qing Yan ◽  
Le Dai ◽  
Chi Bin Gui

TiC/Ti5Si3composite materials on Ti-5Al-2.5Sn were in-situ synthesized by argon tungsten-arc welding (GTAW) deposition from powder compacts with the molar ratio of Ti:Si:C=3:1:2. X-ray diffraction (XRD) techniques and scanning electron microscope (SEM) were employed to characterize the microstructure of the composites. The effects of depositing times on the surface microstructure of the tracks deposited were studied. From the products synthesized in this work, the content of TiC/Ti5Si3in-situ composites on the surface of the tracks differed from each other by depositing one, two, three, and four times, respectively. The minimum impurities were obtained and the distribution of TiC/Ti5Si3. In-situ composites were most homogeneous in the track surface by depositing three times.


2018 ◽  
Vol 9 ◽  
pp. 415-435 ◽  
Author(s):  
Razieh Beigmoradi ◽  
Abdolreza Samimi ◽  
Davod Mohebbi-Kalhori

The orientation and arrangement engineering of carbon nanotubes (CNTs) in composite structures is considered a challenging issue. In this regard, two groups of in situ and ex situ techniques have been developed. In the first, the arrangement is achieved during CNT growth, while in the latter, the CNTs are initially grown in random orientation and the arrangement is then achieved during the device integration process. As the ex situ techniques are free from growth restrictions and more flexible in terms of controlling the alignment and sorting of the CNTs, they are considered by some as the preferred technique for engineering of oriented CNTs. This review focuses on recent progress in the improvement of the orientation and alignment of CNTs in composite materials. Moreover, the advantages and disadvantages of the processes are discussed as well as their future outlook.


Author(s):  
I.R. Antypes ◽  
◽  
V.V. Zaitsev ◽  

Currently, the use of composite materials is increasingly used in various areas of the national economy, including the aviation industry. The materials of this article are devoted to the study of the use of composite materials for the manufacture of aircraft landing gear in comparison with the traditionally used brand of steel. As a result of the work carried out, it was found that the slope made of carbon fiber showed a critical stress twice as high as its design made of 30xgsn2a steel. In addition, carbon plastics are superior to high-strength steel in terms of specific strength, stiffness, and tensile strength.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sadik Omairey ◽  
Nithin Jayasree ◽  
Mihalis Kazilas

AbstractThe increasing use of fibre reinforced polymer composite materials in a wide range of applications increases the use of similar and dissimilar joints. Traditional joining methods such as welding, mechanical fastening and riveting are challenging in composites due to their material properties, heterogeneous nature, and layup configuration. Adhesive bonding allows flexibility in materials selection and offers improved production efficiency from product design and manufacture to final assembly, enabling cost reduction. However, the performance of adhesively bonded composite structures cannot be fully verified by inspection and testing due to the unforeseen nature of defects and manufacturing uncertainties presented in this joining method. These uncertainties can manifest as kissing bonds, porosity and voids in the adhesive. As a result, the use of adhesively bonded joints is often constrained by conservative certification requirements, limiting the potential of composite materials in weight reduction, cost-saving, and performance. There is a need to identify these uncertainties and understand their effect when designing these adhesively bonded joints. This article aims to report and categorise these uncertainties, offering the reader a reliable and inclusive source to conduct further research, such as the development of probabilistic reliability-based design optimisation, sensitivity analysis, defect detection methods and process development.


2021 ◽  
Vol 5 (2) ◽  
pp. 36
Author(s):  
Aleksander Muc

The main goal of building composite materials and structures is to provide appropriate a priori controlled physico-chemical properties. For this purpose, a strengthening is introduced that can bear loads higher than those borne by isotropic materials, improve creep resistance, etc. Composite materials can be designed in a different fashion to meet specific properties requirements.Nevertheless, it is necessary to be careful about the orientation, placement and sizes of different types of reinforcement. These issues should be solved by optimization, which, however, requires the construction of appropriate models. In the present paper we intend to discuss formulations of kinematic and constitutive relations and the possible application of homogenization methods. Then, 2D relations for multilayered composite plates and cylindrical shells are derived with the use of the Euler–Lagrange equations, through the application of the symbolic package Mathematica. The introduced form of the First-Ply-Failure criteria demonstrates the non-uniqueness in solutions and complications in searching for the global macroscopic optimal solutions. The information presented to readers is enriched by adding selected review papers, surveys and monographs in the area of composite structures.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1369
Author(s):  
Sanjeev Kumar ◽  
Lalta Prasad ◽  
Vinay Kumar Patel ◽  
Virendra Kumar ◽  
Anil Kumar ◽  
...  

In recent times, demand for light weight and high strength materials fabricated from natural fibres has increased tremendously. The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. In this review, the physical and mechanical properties of different natural leaf fibre-based composites are addressed. The influences of fibre loading and fibre length on mechanical properties are discussed for different matrices-based composite materials. The surface modifications of natural fibre also play a crucial role in improving physical and mechanical properties regarding composite materials due to improved fibre/matrix adhesion. Additionally, the present review also deals with the effect of silane-treated leaf fibre-reinforced thermoset composite, which play an important role in enhancing the mechanical and physical properties of the composites.


Sign in / Sign up

Export Citation Format

Share Document