scholarly journals Fabrication and Characterization of Sm3+ Doped Zinc Barium Borate Glasses

2018 ◽  
Vol 63 (7) ◽  
pp. 608
Author(s):  
Y. Yamsuk ◽  
P. Yasaka ◽  
N. Sangwaranatee ◽  
J. Keawkao

Zinc-barium-borate glasses with the composition (60 − x)B2O3–10ZnO–30BaO–xSm2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) doped with Sm3+ ions have been prepared, and their physical and optical properties are investigated. The photoluminescence spectra recorded under the 403-nm excitation exhibited the emission bands at 564, 600, 647, and 710 nm corresponding to the transition 4 G5/2 →6 Hj (j = 5/2, 7/2, 9/2, 11/2), respectively. Judd–Ofelt intensity parameters (Ωl, l = 2, 4 and 6) have been evaluated, and the radiative transition probabilities, emission cross-section, and branching ratios for the excited levels of Sm3+ ionsare predicted. The lifetime of the 4 G5/2 level is found to decrease with an increase in the Sm3+ ion concentration.

2017 ◽  
Vol 73 ◽  
pp. 16-19 ◽  
Author(s):  
S.N.C. Santos ◽  
J.M.P. Almeida ◽  
K.T. Paula ◽  
N.B. Tomazio ◽  
V.R. Mastelaro ◽  
...  

2014 ◽  
Vol 875-877 ◽  
pp. 23-27
Author(s):  
Ru Zhen Xing ◽  
Bing Chu Mei ◽  
Jing Hong Song ◽  
Xiao Nv Li

In this paper, we evaluated the spectra parameters of Er3+.The absorption spectra of Er3+:CaF2transparent ceramic was measured at room temperature (RT). Based on the Judd–Ofelt theory, the intensity parameters were Ω2= 5.02×10−20cm2, Ω4= 3.40×10−20cm2and Ω6= 0.38×10−20cm2, and then the values of the radiative transition probabilities, radiative lifetimes and integrated emission cross-sections of excited states were calculated. Full width at half maximum (FWHM) of the fluorescence spectra for4I13/2→4I15/2transition was investigated, being 17nm. The decay time was found to be 24.3ms, which is longer than the theoretically calculated value indicating a radiation trapping effect in this work.


2014 ◽  
Vol 24 (3S1) ◽  
pp. 136-142 ◽  
Author(s):  
Tran Thi Hong ◽  
Phan Tien Dung ◽  
Vu Xuan Quang

In this work, the structural characteristic and photoluminescence properties of Eu\(^{3 + }\) doped B\(_{2}\)O\(_{3}\)-TeO\(_{2}\) -ZnO-Na\(_{2}\)O glasses were investigated. These glasses were prepared by a melting method in air, combined with thermal annealing at 350\(^{\circ}\)C, 450\(^{\circ}\)C and 550\(^{\circ}\)C for different duration times. The structural analysis results of these glasses revealed the formation of micro-crystals in the annealed host glass. The photoluminescence spectra of Eu\(^{3 + }\) doped in these samples were observed. The local vibration mode around Eu\(^{3 + }\) ions was investigated by the phonon side-band (PSB) associated with \(^{7}\!F_{0}-^{5}D_{2}\) transition of Eu\(^{3+}\). Judd-Ofelt parameters were then evaluated based on photoluminescence spectra and the luminescence intensity ratios of \(^{5}D_{0} \to ^{7}\!F_{J}\) (\(J=2, 4\) and 6) to \(^{5}D_{0} \to ^{7}\!F_{1}\) transition were predicted. The obtained results were then used to calculate \(\Omega _{2},\;\Omega _{4},\; \Omega _{6} \) parameters based on Judd-Ofelt theory. These \(\Omega _{2}\), \(\Omega _{4}\), \(\Omega _{6}\) parameters allow to derive radiative properties of Eu\(^{3 + }\) ions in glass material such as transition probabilities, radiative lifetimes and peak stimulated emission cross-section for the \(^{5}D_{0} \to ^{7}\!F_{J}\) transitions.


2013 ◽  
Vol 22 ◽  
pp. 298-304
Author(s):  
BEENA BHATIA ◽  
VISHAL PARIHAR

Glasses of the system: xB2O3-10Bi2O3-30Li2O-xPr6O11 where x =1, 1.5 and 2 were prepared by melt quenching technique. Optical absorption and emission spectra have been recorded. The intensities of f-f transition are calculated in term of Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6). Using the fluorescence data and these Ωλ parameters, various radiative properties like transition probability (Arad), branching ratio (βR), radiative lifetime (τR), and stimulated emission cross section (σp), of various emission lines have been evaluated. The branching ratio for 3P0→3H4 transition is 56% and the predicted spontaneous radiative transition probability rates are fairly high 16411 s−1. This is beneficial for lasing emission.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4221
Author(s):  
Andrei Racu ◽  
Marius Stef ◽  
Gabriel Buse ◽  
Irina Nicoara ◽  
Daniel Vizman

The influence of erbium ion concentration on the optical properties of BaF2:ErF3 crystals was investigated. Four ErF3 concentration (0.05, 0.08, 0.15 and 0.5 mol% ErF3)-doped BaF2 crystals were obtained using the Bridgman technique. Room temperature optical absorption in the 250–850 nm spectral range was measured, and the photoluminescence (PL) and decay times were also investigated. The Judd–Ofelt (JO) approximation was used, taking into account four absorption peaks (at 377, 519, 653 and 802 nm). The JO intensity parameters, Ωt (t = 2, 4, 6), were calculated. The influence of the ErF3 concentration on the JO parameters, branching ratio, radiative transition probability and radiative lifetime were studied. The obtained results were compared with measured values and with those reported in the literature. Under excitation at 380 nm, the well-known green (539 nm) and red (668 nm) emissions were obtained. The calculated and experimental radiative lifetimes were in millisecond range for green and red emissions. The intensity of the PL spectra varied with the Er3+ ion concentration. The emission intensity increased linearly or exponentially, depending on the ErF3 concentration. Under excitation at 290 nm, separate to the green and red emissions, a new UV emission band (at 321 nm) was obtained. Other research has not reported the UV emission or the influence of ErF3 concentration on emission behavior.


2012 ◽  
Vol 585 ◽  
pp. 279-283 ◽  
Author(s):  
Sunil Bhardwaj ◽  
Rajni Shukla ◽  
Sujata Sanghi ◽  
Ashish Agarwal ◽  
Inder Pal

Glasses having compositions 20B2O3.(79.5-x)Bi2O3.xSiO2(10 ≤ x ≤ 40) doped with 0.5 mol% of Sm3+ions were prepared by melt quench technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The spectroscopic properties of Sm3+ions in bismuth borosilicate glasses as a function of bismuth oxide were investigated using optical absorption and fluorescence spectra. The Judd-Ofelt theory has been employed to calculate transitions probability from the data of absorption cross-section of several f-f transitions. The intensity parameters Ω2is related to the symmetry of glass hosts, where as the parameter Ω6is inversely proportional to the rare earth oxygen (RE-O) covalency. The variation of Ω4with Bi2O3content has been attributed to rigidity of the samples. Using the Judd Ofelt intensity parameters the other radiative properties like radiative transition probability, radiative life time, branching ratio and the stimulated emission cross-sections of prepared BBSS glasses have been calculated. A bright fluorescent orange emission at 600 nm (4G5/2→6H7/2) of Sm3+ion has been investigated as a function of Bi2O3in host glass. The radiative transition probabilities of Sm3+ions are large in bismuth borosilicate glasses, suggesting the suitability of these glasses as potential candidate for laser application.


2014 ◽  
Vol 23 (4) ◽  
pp. 377
Author(s):  
Tran Thi Hong ◽  
Phan Tien Dung ◽  
Vu Xuan Quang

In this work, the structural characteristic and photoluminescence properties were investigated in Eu\(^{3 + }\) ions-doped B\(_{2}\)O\(_{3}\)-TeO\(_{2}\) --ZnO-Na\(_{2}\)O glasses. These glasses were prepared by the melting method in air, after that thermal annealed 350\rc{}C, 450\rc{}C and 550\rc{}C for different times. The analysis results of structure on these glasses showed the formation of micro-crystals in host glass after thermal annealed process. The photoluminescence spectra of Eu\(^{3 + }\) ions in these samples were observed. The local vibration mode around Eu\(^{3 + }\) ions was investigated by the phonon side band associated with \(^{7}\)F\(_{0}\)- \(^{5}\)D\(_{2}\) transition of Eu\(^{3 + }\). Judd-Ofelt parameters have been evaluated from photoluminescence spectra and were to predict the luminescence intensity ratios of \(^{5}\)D\(_{0} \to ^{7}\)F\(_{J}\) (J=2, 4 and 6) to \(^{5}\)D\(_{0} \to ^{7}\)F\(_{1}\) transition. The obtained results have been used for calculating \(\Omega_{2}\), \(\Omega _{4}\), \(\Omega _{6}\) parameters by using Judd-Ofelt theory. These \(\Omega _{2}\), \(\Omega _{4}\), \(\Omega _{6}\) parameters allow to derive radiative properties of Eu\(^{3 + }\) ions in glass material such as transition probabilities, radiative lifetimes and peak stimulated emission cross-section for the \(^{5}\)D\(_{0} \to ^{7}\)F\(_{J}\) transitions.


Sign in / Sign up

Export Citation Format

Share Document