scholarly journals Consideration of the Competing Factors in Calculations of the Characteristics of Non-Magnetic Degenerate Dwarfs

2018 ◽  
Vol 63 (9) ◽  
pp. 777
Author(s):  
M. V. Vavrukh ◽  
D. V. Dzikovskyi ◽  
S. V. Smerechynskyi

Using the equation of state of the electron-nuclear model at high densities and the mechanical equilibrium equation, we have investigated the influence of interparticle interactions and the axial rotation on the macroscopic characteristics (mass, surface shape) of massive degenerate dwarfs. We propose a method of solving the equilibrium equation in the case of rotation that uses the basis of universal functions of the radial variable. The conditions, under which the axial rotation can compensate for a weight loss of the mass due to the Coulomb interactions, have been established. The maximal value of the relativistic parameter, at which the stability is disturbed, is determined within the general theory of relativity (GTR).

2018 ◽  
Vol 8 (1) ◽  
pp. 9-15
Author(s):  
D. Dzikovskyi ◽  
M. Vavrukh ◽  
S. Smerechynskyi

Using the equation of state of electron-nuclear model at high densities and the mechanical equilibrium equation we have investigated the influence of interparticle interactions and axial rotation on the macroscopic characteristics of massive white dwarfs. The method of solving the equilibrium equation in the case of rotation, using the basis of universal functions of the radial variable has been proposed. The conditions in which the axial rotation can compensate for weight loss of mass due to the interparticle Coulomb interactions have been established.


1989 ◽  
Vol 155 ◽  
Author(s):  
Wan V. Shih ◽  
Wei-Heng Shih ◽  
Jun Liu ◽  
Ilhan A. Aksay

The stability of a colloidal suspension plays an important role in colloidal processing of materials. The stability of the colloidal fluid phase is especially vital in achieving high green densities. By colloidal fluid phase, we refer to a phase in which colloidal particles are well separated and free to move about by Brownian motion, By controlling parameters such as pH, salt concentration, and surfactants, one can achieve high packing (green) densities in the repulsive regime where the suspension is well dispersed as a colloidal fluid, and low green densities in the attractive regime where the suspensions are flocculated [1,2]. While there is increasing interest in using bimodal suspensions to improve green densities, neither the stability of a binary suspension as a colloidal fluid nor the stability effects on the green densities have been studied in depth as yet. Traditionally, the effect of using bimodal-particle-size distribution has only been considered in terms of geometrical packing developed by Furnas and others [3,4]. This model is a simple packing concept and is used and useful for hard sphere-like repulsive interparticle interactions. With the advances in powder technology, smaller and smaller particles are available for ceramic processing. Thus, the traditional consideration of geometrial packing for the green densities of bimodal suspensions may not be enough. The interaction between particles must be taken into account.


Author(s):  
Andrew Claypole ◽  
James Claypole ◽  
Tim Claypole ◽  
David Gethin ◽  
Liam Kilduff

Abstract Carbon-based pastes and inks are used extensively in a wide range of printed electronics because of their widespread availability, electrical conductivity and low cost. Overcoming the inherent tendency of the nano-carbon to agglomerate to form a stable dispersion is necessary if these inks are to be taken from the lab scale to industrial production. Plasma functionalization of graphite nanoplatelets (GNP) adds functional groups to their surface to improve their interaction with the polymer resin. This offers an attractive method to overcome these problems when creating next generation inks. Both dynamic and oscillatory rheology were used to evaluate the stability of inks made with different loadings of functionalized and unfunctionalized GNP in a thin resin, typical of a production ink. The rheology and the printability tests showed the same level of dispersion and electrical performance had been achieved with both functionalized and unfunctionalized GNPs. The unfunctionalized GNPs agglomerate to form larger, lower aspect particles, reducing interparticle interactions and particle–medium interactions. Over a 12-week period, the viscosity, shear thinning behavior and viscoelastic properties of the unfunctionalized GNP inks fell, with decreases in viscosity at 1.17 s−1 of 24, 30, 39% for the ϕ = 0.071, 0.098, 0.127 GNP suspensions, respectively. However, the rheological properties of the functionalized GNP suspensions remained stable as the GNPs interacted better with the polymer in the resin to create a steric barrier which prevented the GNPs from approaching close enough for van der Waals forces to be effective.


Author(s):  
Linbo Zhu ◽  
Yifei Hou ◽  
Abdel-Hakim Bouzid ◽  
Jun Hong

Metal to metal contact between joint surfaces is widely used in bolted joints to obtain a rigid and a high performance connection. However, a significant amount of clamping load is lost when the joint is subjected to mechanical and thermal loading including creep and fatigue. In practice, to prevent bolt loosening, additional parts such as spring washers, double nut, spring lock washers, Nyloc nut and so on are used. Those methods are costly and influence the stability of the joint and affect its structural integrity. It is well established that a small compression displacement in clamping parts leads to a big clamping load loss in stiff joints. This paper discusses the relationship between connection stiffness and clamping load and presents a method that improves clamping load retention during operation by a careful design of the member contact surface shape. A single bolted joint with two clamping parts is modeled using finite element method (FEM). A method is proposed to obtain a specific stiffness by an optimized geometrical shape of the joint contact surfaces. The result shows that the contact surface shape based on a gradually varying gap can improve the retention of the initial clamping load. Furthermore, a formula of the connection stiffness based on the curve fitting technique is proposed to predict residual clamping load under different external load and loosening.


2014 ◽  
Vol 10 (3) ◽  
pp. 412-417 ◽  
Author(s):  
Marco T. Reis ◽  
Phillip M. Reyes ◽  
Neil R. Crawford

Abstract BACKGROUND: A new anchored cervical interbody polyetheretherketone spacer was devised that uses only 2 integrated variable-angle screws diagonally into the adjacent vertebral bodies instead of the established device that uses 4 diagonal fixed-angle screws. OBJECTIVE: To compare in vitro the stability provided by the new 2-screw interbody spacer with that of the 4-screw spacer and a 4-screw anterior plate plus independent polyetheretherketone spacer. METHODS: Three groups of cadaveric specimens were tested with 2-screw anchored cage (n = 8), 4-screw anchored cage (n = 8), and standard plate/cage (n = 16). Pure moments (1.5 Nm) were applied to induce flexion, extension, lateral bending, and axial rotation while measuring 3-D motion optoelectronically. RESULTS: In all 3 groups, the mean range of motion (ROM) and lax zone were significantly reduced relative to the intact spine after discectomy and fixation. The 2-screw anchored cage allowed significantly greater ROM (P < .05) than the standard plate during flexion, extension, and axial rotation and allowed significantly greater ROM than the 4-screw cage during extension and axial rotation. The 4-screw anchored cage did not allow significantly different ROM or lax zone than the standard plate during any loading mode. CONCLUSION: The 2-screw variable-angle anchored cage significantly reduces ROM relative to the intact spine. Greater stability can be achieved, especially during extension and axial rotation, by using the 4-screw cage or standard plate plus cage.


2006 ◽  
Vol 505-507 ◽  
pp. 403-408 ◽  
Author(s):  
Hong Hee Yoo ◽  
Kang Sik Jung ◽  
Seung Jae Moon

For the design of a vibrating micro-beam structure, modal and stability analyses of the structure actuated by electrostatic force is performed in the present study. Static deflection of the micro-beam caused by the electrostatic force is first obtained by solving the nonlinear equilibrium equation and the modal and stability characteristics are calculated at the static equilibrium position. It is found that the amplitude and the frequency of the applied electrostatic voltage influence the stability of the structure significantly. A design specification of a vibrating micro-beam structure can be effectively determined from the modal and the stability analysis results.


2019 ◽  
Vol 34 (31) ◽  
pp. 1950252 ◽  
Author(s):  
M. Z. Bhatti ◽  
Z. Yousaf ◽  
Zarnoor

In this work, we discuss the stability of charged neutron star in the background of [Formula: see text] gravity and construct the generalized Tolman–Oppenheimer–Volkoff (TOV) equations. For this, we consider static spherically symmetric geometry to construct the hydrostatic equilibrium equation and deduce TOV equations from modified field equations with electromagnetic effects. We conclude that the generalized TOV equation depicts the stable stars configuration independent of the generic function of the modified gravity if the condition of uniform entropy and chemical composition is assumed.


1958 ◽  
Vol 25 (2) ◽  
pp. 267-273
Author(s):  
N. Yamaki

Abstract This paper deals with the elastic stability of a circular annular plate under uniform compressive forces applied at its edges. By integrating the equilibrium equation of the buckled plate, the problem is solved in its most general form for twelve different combinations of the boundary conditions of the edges. For each case cited the lowest critical loads are calculated with the ratio of its radii as the parameter. It is clarified that the assumption of symmetrical buckling, which has been made by several researchers, often leads to the overestimate for the stability of the plate. Discussions for the limiting cases of the circular plate and infinite strip also are included.


2021 ◽  
pp. 1-13
Author(s):  
Waseem Ur Rahman ◽  
Wei Jiang ◽  
Guohua Wang ◽  
Zhijun Li

BACKGROUND: The finite element method (FEM) is an efficient and powerful tool for studying human spine biomechanics. OBJECTIVE: In this study, a detailed asymmetric three-dimensional (3D) finite element (FE) model of the upper cervical spine was developed from the computed tomography (CT) scan data to analyze the effect of ligaments and facet joints on the stability of the upper cervical spine. METHODS: A 3D FE model was validated against data obtained from previously published works, which were performed in vitro and FE analysis of vertebrae under three types of loads, i.e. flexion/extension, axial rotation, and lateral bending. RESULTS: The results show that the range of motion of segment C1–C2 is more flexible than that of segment C2–C3. Moreover, the results from the FE model were used to compute stresses on the ligaments and facet joints of the upper cervical spine during physiological moments. CONCLUSION: The anterior longitudinal ligaments (ALL) and interspinous ligaments (ISL) are found to be the most active ligaments, and the maximum stress distribution is appear on the vertebra C3 superior facet surface under both extension and flexion moments.


Sign in / Sign up

Export Citation Format

Share Document