Analysis of Current Phase Lead Characteristics Using Transfer Function for Stepper Motors in Middle-Speed Operation

2020 ◽  
Vol 140 (12) ◽  
pp. 983-984
Author(s):  
Naoki Kawamura ◽  
Tadanao Zanma ◽  
Kang-Zhi Liu ◽  
Syota Inoue ◽  
Susumu Osawa ◽  
...  
2005 ◽  
Vol 33 (2) ◽  
pp. 93-109 ◽  
Author(s):  
Shlomo Engelberg

A simple model of the driver—automobile system is developed and several reasonable candidates for the transfer function of the human ‘controller’ are studied. The model is used to examine the controller candidates. The complete system is analysed both analytically and through simulations. It is found that a delay followed by a phase-lead controller is a reasonable choice for the transfer function that the human ‘controller’ implements. The model developed is compared with a more realistic model and is seen to be a reasonable approximation of the realistic model at low frequencies. Reaction time is shown to be a critical parameter in understanding the dynamics of the driver—automobile system.


1983 ◽  
Vol 49 (3) ◽  
pp. 639-648 ◽  
Author(s):  
K. Ezure ◽  
M. S. Cohen ◽  
V. J. Wilson

1. We studied the response of cat vestibular afferents, most likely innervating the semicircular canals, to sinusoidal polarizing currents applied to an electrode implanted near the horizontal ampulla. 2. Electrode implantation abolished responses to natural stimulation and reduced the level of resting activity compared to a population of afferents from unimplanted animals. The distribution of coefficients of variation of resting activity was, however, similar to that seen when the labyrinth is intact. 3. Many fibers were modulated sinusoidally by polarizing currents in the frequency range 0.175-4 Hz. Phase was mainly constant and typically led stimulus negativity by approximately 14 degrees, although about half the regular fibers had a phase lead that increased with frequency. Mean sensitivity (spikes X s-1 X microA-1) of regular and irregular fibers increased by a factor of about 1.5 over the frequency studied. Absolute sensitivity was about 7 times higher for irregular than for regular fibers. The overall behavior of the afferents could be well described by a transfer function in the form, sk, with 0 less than k less than 1. 4. We compared the response of afferent fibers to sinusoidal current with the response of second-order neurons studied under similar conditions in earlier experiments (15, 23). While the slopes of the sensitivities were similar, second-order neurons developed a phase advance over afferents at frequencies around 1 Hz. This difference in dynamics can be described by a transfer function in the form tau S + 1, with tau = 12 ms. This predicts that second-order neurons can develop a phase lead of about 25 degrees with respect to afferents at 6 Hz, a frequency still in the physiological range. It remains to be determined whether this applies to a particular subset of second-order neurons contributing to vestibulocollic reflexes.


Author(s):  
H.A. Cohen ◽  
W. Chiu

The goal of imaging the finest detail possible in biological specimens leads to contradictory requirements for the choice of an electron dose. The dose should be as low as possible to minimize object damage, yet as high as possible to optimize image statistics. For specimens that are protected by low temperatures or for which the low resolution associated with negative stain is acceptable, the first condition may be partially relaxed, allowing the use of (for example) 6 to 10 e/Å2. However, this medium dose is marginal for obtaining the contrast transfer function (CTF) of the microscope, which is necessary to allow phase corrections to the image. We have explored two parameters that affect the CTF under medium dose conditions.Figure 1 displays the CTF for carbon (C, row 1) and triafol plus carbon (T+C, row 2). For any column, the images to which the CTF correspond were from a carbon covered hole (C) and the adjacent triafol plus carbon support film (T+C), both recorded on the same micrograph; therefore the imaging parameters of defocus, illumination angle, and electron statistics were identical.


Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


Author(s):  
D. Van Dyck

An (electron) microscope can be considered as a communication channel that transfers structural information between an object and an observer. In electron microscopy this information is carried by electrons. According to the theory of Shannon the maximal information rate (or capacity) of a communication channel is given by C = B log2 (1 + S/N) bits/sec., where B is the band width, and S and N the average signal power, respectively noise power at the output. We will now apply to study the information transfer in an electron microscope. For simplicity we will assume the object and the image to be onedimensional (the results can straightforwardly be generalized). An imaging device can be characterized by its transfer function, which describes the magnitude with which a spatial frequency g is transferred through the device, n is the noise. Usually, the resolution of the instrument ᑭ is defined from the cut-off 1/ᑭ beyond which no spadal information is transferred.


Author(s):  
Peter Rez

In high resolution microscopy the image amplitude is given by the convolution of the specimen exit surface wave function and the microscope objective lens transfer function. This is usually done by multiplying the wave function and the transfer function in reciprocal space and integrating over the effective aperture. For very thin specimens the scattering can be represented by a weak phase object and the amplitude observed in the image plane is1where fe (Θ) is the electron scattering factor, r is a postition variable, Θ a scattering angle and x(Θ) the lens transfer function. x(Θ) is given by2where Cs is the objective lens spherical aberration coefficient, the wavelength, and f the defocus.We shall consider one dimensional scattering that might arise from a cross sectional specimen containing disordered planes of a heavy element stacked in a regular sequence among planes of lighter elements. In a direction parallel to the disordered planes there will be a continuous distribution of scattering angle.


Author(s):  
T. Oikawa ◽  
H. Kosugi ◽  
F. Hosokawa ◽  
D. Shindo ◽  
M. Kersker

Evaluation of the resolution of the Imaging Plate (IP) has been attempted by some methods. An evaluation method for IP resolution, which is not influenced by hard X-rays at higher accelerating voltages, was proposed previously by the present authors. This method, however, requires truoblesome experimental preperations partly because specially synthesized hematite was used as a specimen, and partly because a special shape of the specimen was used as a standard image. In this paper, a convenient evaluation method which is not infuenced by the specimen shape and image direction, is newly proposed. In this method, phase contrast images of thin amorphous film are used.Several diffraction rings are obtained by the Fourier transformation of a phase contrast image of thin amorphous film, taken at a large under focus. The rings show the spatial-frequency spectrum corresponding to the phase contrast transfer function (PCTF). The envelope function is obtained by connecting the peak intensities of the rings. The evelope function is offten used for evaluation of the instrument, because the function shows the performance of the electron microscope (EM).


Author(s):  
Joachim Frank

Cryo-electron microscopy combined with single-particle reconstruction techniques has allowed us to form a three-dimensional image of the Escherichia coli ribosome.In the interior, we observe strong density variations which may be attributed to the difference in scattering density between ribosomal RNA (rRNA) and protein. This identification can only be tentative, and lacks quantitation at this stage, because of the nature of image formation by bright field phase contrast. Apart from limiting the resolution, the contrast transfer function acts as a high-pass filter which produces edge enhancement effects that can explain at least part of the observed variations. As a step toward a more quantitative analysis, it is necessary to correct the transfer function in the low-spatial-frequency range. Unfortunately, it is in that range where Fourier components unrelated to elastic bright-field imaging are found, and a Wiener-filter type restoration would lead to incorrect results. Depending upon the thickness of the ice layer, a varying contribution to the Fourier components in the low-spatial-frequency range originates from an “inelastic dark field” image. The only prospect to obtain quantitatively interpretable images (i.e., which would allow discrimination between rRNA and protein by application of a density threshold set to the average RNA scattering density may therefore lie in the use of energy-filtering microscopes.


Sign in / Sign up

Export Citation Format

Share Document