A Method of Fabricating Electroplated Structures using Side-wall Electrical Contact

2014 ◽  
Vol 134 (2) ◽  
pp. 20-25 ◽  
Author(s):  
Takanori Aono ◽  
Yasuhiro Yoshimura ◽  
Yoshinori Nakayama ◽  
Masatoshi Kanamaru
Keyword(s):  
Author(s):  
S. G. Ghonge ◽  
E. Goo ◽  
R. Ramesh ◽  
R. Haakenaasen ◽  
D. K. Fork

Microstructure of epitaxial ferroelectric/conductive oxide heterostructures on LaAIO3(LAO) and Si substrates have been studied by conventional and high resolution transmission electron microscopy. The epitaxial films have a wide range of potential applications in areas such as non-volatile memory devices, electro-optic devices and pyroelectric detectors. For applications such as electro-optic devices the films must be single crystal and for applications such as nonvolatile memory devices and pyroelectric devices single crystal films will enhance the performance of the devices. The ferroelectric films studied are Pb(Zr0.2Ti0.8)O3(PLZT), PbTiO3(PT), BiTiO3(BT) and Pb0.9La0.1(Zr0.2Ti0.8)0.975O3(PLZT).Electrical contact to ferroelectric films is commonly made with metals such as Pt. Metals generally have a large difference in work function compared to the work function of the ferroelectric oxides. This results in a Schottky barrier at the interface and the interfacial space charge is believed to responsible for domain pinning and degradation in the ferroelectric properties resulting in phenomenon such as fatigue.


2008 ◽  
Vol 128 (8) ◽  
pp. 325-330 ◽  
Author(s):  
Hiroaki Kawata ◽  
Junya Ishihara ◽  
Masayo Kayama ◽  
Masaaki Yasuda ◽  
Yoshihiko Hirai
Keyword(s):  

2015 ◽  
Vol E98.C (4) ◽  
pp. 364-370 ◽  
Author(s):  
Wanbin REN ◽  
Shengjun XUE ◽  
Hongxu ZHI ◽  
Guofu ZHAI

2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract AMBRONZE 413 is a copper-tin bronze recommended for plater's plates and electrical contact springs. It is relatively immune to stress-corrosion cracking. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-201. Producer or source: Anaconda American Brass Company.


Alloy Digest ◽  
1979 ◽  
Vol 28 (11) ◽  

Abstract CONSIL 901 is the most commonly used of the silver-copper electrical contact alloys. It has higher hardness and better resistance to wear than fine silver. It is used widely for light and medium-duty applications involving electrical-contact devices. This datasheet provides information on composition, physical properties, microstructure, tensile properties. It also includes information on corrosion resistance as well as casting, forming, heat treating, joining, and surface treatment. Filing Code: Ag-9. Producer or source: Handy & Harman.


Author(s):  
P. Singh ◽  
V. Cozzolino ◽  
G. Galyon ◽  
R. Logan ◽  
K. Troccia ◽  
...  

Abstract The time delayed failure of a mesa diode is explained on the basis of dendritic growth on the oxide passivated diode side walls. Lead dendrites nucleated at the p+ side Pb-Sn solder metallization and grew towards the n side metallization. The infinitesimal cross section area of the dendrites was not sufficient to allow them to directly affect the electrical behavior of the high voltage power diodes. However, the electric fields associated with the dendrites caused sharp band bending near the silicon-oxide interface leading to electron tunneling across the band gap at velocities high enough to cause impact ionization and ultimately the avalanche breakdown of the diode. Damage was confined to a narrow path on the diode side wall because of the limited influence of the electric field associated with the dendrite. The paper presents experimental details that led to the discovery of the dendrites. The observed failures are explained in the context of classical semiconductor physics and electrochemistry.


2019 ◽  
Vol 24 (4) ◽  
pp. 51-58
Author(s):  
Le Hong Quan ◽  
Nguyen Van Chi ◽  
Mai Van Minh ◽  
Nong Quoc Quang ◽  
Dong Van Kien

The study examines the electrochemical properties of a coating based on water sodium silicate and pure zinc dust (ZSC, working title - TTL-VN) using the Electrochemical Impedance Spectra (EIS) with AutoLAB PGSTAT204N. The system consists of three electrodes: Ag/AgCl (SCE) reference electrode in 3 M solution of KCl, auxiliary electrode Pt (8x8 mm) and working electrodes (carbon steel with surface treatment up to Sa 2.5) for determination of corrosion potential (Ecorr) and calculation of equivalent electric circuits used for explanation of impedance measurement results. It was shown that electrochemical method is effective for study of corrosion characteristics of ZSC on steel. We proposed an interpretation of the deterioration over time of the ability of zinc particles in paint to provide cathodic protection for carbon steel. The results show that the value of Ecorr is between -0,9 and -1,1 V / SCE for ten days of diving. This means that there is an electrical contact between the zinc particles, which provides good cathodic protection for the steel substrate and most of the zinc particles were involved in the osmosis process. The good characteristics of the TTL-VN coating during immersion in a 3,5% NaCl solution can also be explained by the preservation of corrosive zinc products in the coating, which allows the creation of random barrier properties.


Sign in / Sign up

Export Citation Format

Share Document