Modern motor milestones

PEDIATRICS ◽  
1978 ◽  
Vol 62 (6) ◽  
pp. 1037-1038
Author(s):  
Lawrence R. Berger

In child development circles, a motor milestone is a discrete event in a person's progressive mastery of control over the body's movements. To most parents, each milestone-sitting up without support, grasping a raisin between thumb and forefinger, holding a cup, taking the first step all by herself—is a joyous occasion in their child's life. Children of the seventies, however, exhibit a new set of motor milestones made possible by our affluent society. None of these is cause for celebration. The modern milestones are discrete events marking the child's progressive involvement with engine-driven vehicles. As early as 4 years of age, children may ride their first minibike.

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Hannes Weinreuter ◽  
Balázs Szigeti ◽  
Nadine-Rebecca Strelau ◽  
Barbara Deml ◽  
Michael Heizmann

Abstract Autonomous driving is a promising technology to, among many aspects, improve road safety. There are however several scenarios that are challenging for autonomous vehicles. One of these are unsignalized junctions. There exist scenarios in which there is no clear regulation as to is allowed to drive first. Instead, communication and cooperation are necessary to solve such scenarios. This is especially challenging when interacting with human drivers. In this work we focus on unsignalized T-intersections. For that scenario we propose a discrete event system (DES) that is able to solve the cooperation with human drivers at a T-intersection with limited visibility and no direct communication. The algorithm is validated in a simulation environment, and the parameters for the algorithm are based on an analysis of typical human behavior at intersections using real-world data.


Chapter 8 gives a brief discussion of computer simulation for discrete events. The chapter lists software programs in the technical literature that outline programs for the simulation of discrete events, both of commercial origin and free programs. In addition to the lists submitted, the authors present specialized packages for analysis and simulation of waiting lines in the R language. Statistical considerations are presented, which must be taken into account when obtaining data from simulations in situations of waiting lines. Chapter 8 presents three packages of the statistical program R: the “queueing” analysis package provides versatile tools for analysis of birth- and death-based Markovian queueing models and single and multiclass product-form queueing networks; “simmer” package is a process-oriented and trajectory-based discrete-event simulation (DES) package for R; and, the purpose of the “queuecomputer” package is to calculate, deterministically, the outputs of a queueing network, given the arrival and service times of all the customers. It also uses simulation for the implementation of a method for the calculation of queues with arbitrary arrival and service times. For each theme, the authors show the use of the packages in R.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 155 ◽  
Author(s):  
Kalvis Kons ◽  
Pedro La Hera ◽  
Dan Bergström

This article deals with the topic of modelling the log-yard of one of our industry partners. To this end, our framework is based on discrete-events modelling (DEM), as consequence that many stages of the process run as a sequence of events. The sequence starts when trucks, trains or ships arrive loaded with logs to the log-yard. A machine unloads these logs and accumulates them in different storage areas. Consequently, a machine transports logs from these areas to the pulp mill, thus finishing the process. As using probability density functions is the core concept of DEM, the necessary process data to build these PDFs have been partly provided by the company. Other necessary data have been acquired through time studies, and by defining operational requirements. The company data tell when trucks, trains, or ships arrive to the log-yard, and the amount of volume they carry. The objective is to develop the necessary formulations, model calibration techniques, and software, such that computer simulations reproduce the quantities observed in these data. To this end, this work suggests two alternatives to analyse the data itself. These two alternatives lead to two different models: (1) The first being a hybrid model, in the sense that it involves the events in the process, and the logic decisions taken by machine operators for handling the incoming load, and (2) the second containing only the main mathematical essence of the process. After running 100 simulations, both mathematical models show that the simulated values for input and output, in terms of transport units and their volume, differ only by less than 3% compared to company data. The first model has also shown the ability to replicate the decision making that a machine operator undergoes for driving the logs to the storage areas, and from there to the mill. Therefore, the framework adopted provides the necessary mathematical tools and data analysis to model the log-yard and obtain highly reliable results via simulations.


2020 ◽  
Vol 4 (3) ◽  
pp. 580-580
Author(s):  
Reinaldo Padilha França

Background: Information systems used in hospitals are slow and consume a lot of system memory, facilitating crashes, impacting patients seeking consultation face long waiting periods by a medical specialist; Still considering that exchange patient data and medical consultations in system interconnected between hospitals, for scheduling of consultations may become even more latent.Methods: Aiming to solve such problems, the present study implements modeling with discrete-event technology applied to a healthcare system, modulating the signal transmitted with the DQPSK format, through the simulation environment, the Simulink of the MATLAB software, improving the transmission of data, through a pre-coding process of bits adopting discrete events in the signal before modulation.Results: This study aims to increase the information capacity for healthcare systems, bringing a new approach for signal transmission, undertaken in the discrete domain employing the discrete entities in the bit generation process, this use being the differential applied on the bit itself, in the physical layer, showing better computational performance regarding memory utilization related to compression of information, showing an improvement of 101.52%.Conclusion: The proposal developed has the properties of improving the capacity of hospital services and can increase the performance of the communication between all medical devices, this positive impact is the result that the data stream will consume fewer communication resources.


2008 ◽  
pp. 1-35
Author(s):  
Evon M. O. Abu-Taieh ◽  
Asim Abdel Rahman El Sheikh

This chapter aims to give a comprehensive explanatory platform of simulation background. As this chapter comprises of four sections, it reviews simulation definitions, forms of models, the need for simulation, simulation approaches and modeling notations. Simulation definition is essential in order to set research boundaries. Moreover, the chapter discusses forms of models: scale model of the real system, or discrete and continuous models. Subsequently, the chapter states documentation of several reasons by different authors pertaining to the question of “why simulate?,” followed by a thorough discussion of modeling approaches in respect to general considerations. Simulation modeling approaches are discussed with special emphasis on the discrete events type only: process-interaction, event scheduling, and activity scanning, yet, a slight comparison is made between the different approaches. Furthermore, the chapter discusses modeling notations activity cycle diagram (ACD) with different versions of the ACD. Furthermore, the chapter discusses petri nets, which handle concurrent discrete events dynamic systems simulation. In addition, Monte Carlo simulation is discussed due to its important applications. Finally, the fourth section of this chapter reviews Web-based simulation, along with all three different types of object-oriented simulation and modeling.


Author(s):  
Reinaldo Padilha França ◽  
Yuzo Iano ◽  
Ana Carolina Borges Monteiro ◽  
Rangel Arthur

Smart telecoms will deliver lasting improvements to business productivity and enduring consumer benefits that raise the quality of life by enabling telecommuting, telemedicine, entertainment, access to e-government, and a wealth of other online services. And we'll need next-generation digital platforms on which telecom providers can create and deliver all kinds of services. Therefore, this chapter develops a method of data transmission based on discrete event concepts. This methodology was named CBEDE. Using the MATLAB software, the memory consumption of the proposed methodology was evaluated, presenting the great potential to intermediate users and computer systems, ensuring speed, low memory consumption, and reliability. With the differential of this research, the use of discrete events applied in the physical layer of a transmission medium, the bit itself, being this to low-level of abstraction, the results show better computational performance related to memory utilization, showing an improvement of up to 79.89%.


Author(s):  
Reinaldo Padilha França ◽  
Yuzo Iano ◽  
Ana Carolina Borges Monteiro ◽  
Rangel Arthur

The present study aims to implement a discrete event simulation (DES)-based model. This model is called coding of bits for entities by means of discrete events (CBEDE) and aims to improve the transmission of content in wireless telecommunication systems. This is done by applying advanced modulation format DQPSK in a simulation environment, the Simulink of the MATLAB software, through a pre-coding process of bits applying discrete events in the signal before of the modulation process, occurring in the discrete domain with the implementation of discrete entities in the process of bit generation applied at a low level of abstraction in a wireless telecommunication system. The results show improvements of 89.08% in memory utilization, related to information compression, in the context of the research. Therefore, the presented results of the proposed methodology show an enormous potential for the non-orthogonal multiple access (NOMA) contexts, credited as the future 5G, and can compensate for the additional complexity brought by the techniques to the telecommunications channel.


Author(s):  
Juan L. G. Guirao ◽  
Fernando L. Pelayo

This paper provides an overview over the relationship between Petri Nets and Discrete Event Systems as they have been proved as key factors in the cognitive processes of perception and memorization. In this sense, different aspects of encoding Petri Nets as Discrete Dynamical Systems that try to advance not only in the problem of reachability but also in the one of describing the periodicity of markings and their similarity, are revised. It is also provided a metric for the case of Non-bounded Petri Nets.


Author(s):  
Raiza Reyes Mejia ◽  
Blass Troncoso Mendoza ◽  
Alexander Troncoso Palacio

In productive processes where parts are assembled, the assembly time is one of the most important problems that should be solved. Due to this, a case study was carried out in one company in the wooden sector, in which the Lean methodologies and the Discrete Events Simulation are integrated, to evaluate and improve the assembly processes of four-input wooden stowage. This study began by validating the process, then it was simulated in the Arena software, where great variability is observed in the assembly time of the four-input pallets, obtaining an average result of 25+/- 2 minutes. Due to this reason, the use of this methodology was proposed, applying the DMAIC cycle and carrying out controls in the process, it was possible to reduce it to 19 +/- 1 minute per stowage unit assembled, which meant a 24% reduction in the time spent manufacturing. All of this positively influenced the final delivery time of the product, so, with this new time, the company could satisfy the demand of its customers, and will be able to place its product on the market in less time.


2021 ◽  
Vol 12 (9) ◽  
pp. s831-s842
Author(s):  
Marcos Aurélio da Rocha Nascimento ◽  
Lilian Mendes dos Santos ◽  
Adriano Maniçoba da Silva ◽  
Regis Cortez Bueno ◽  
Sivanilza Teixeira Machado ◽  
...  

Capacity and queue management are currently used in financial institutions. With decreasing bank units due to internet services, research in this field has focused on improving to utilize their employees efficiently and achieve service excellence. In developing countries like Brazil, the customer has become more bank-accounted due to government and labor requirements, such as the wage credit became mandatory in the wage account. The paper's aim is motivated by a real-life case study to simulate discrete events to improve queue management at a Brazilian bank branch with the Arena software simulation environment. The simulation model was designed, tested, and applied considering the Discrete Event Simulation (DES) replication for queuing strategies on a real-world banking scenario. The arrival and service times were collected from 115 customers in Ferraz de Vasconcelos/SP city. It was performed in version 15.10 (2018) of the Arena software, with processor Intel core i3 CPU dual-core 3.07 GHz and 8GB of RAM. The results indicate that the bank agency should consider providing 9 to 11 operators to attend customers considering the arrival and service rate.


Sign in / Sign up

Export Citation Format

Share Document