scholarly journals Hydrogen peroxide reduces sensitivity to aluminum in canola?

2021 ◽  
Vol 70 (2) ◽  
Author(s):  
Silvana de Paula Quintão Scalon

The objective of this study was to evaluate the effect of aluminum and the mitigating potential of H2O2 on the stress and antioxidant responses in canola (Brassica napus var. oleifera (Moench) Delile) affecting the emergence and initial growth of plants. Canola seeds, cultivar Hyola 61, were treated with different concentrations of H2O2 solution (0.0, 0.075, and 0.15 M), and later sown under different concentrations of aluminum (0.0, 10, 20, and 30 mmolc dm-3). After 20 days of plant emergence, survival and growth characteristics were evaluated. 20, 30, 40, 50, and 60 days after emergence, height, chlorophyll index, chlorophyll a fluorescence, and the activity of superoxide dismutase in the roots were determined. The canola is sensitive to aluminum, and the treatment of seeds with H2O2 0.15 M mitigated the stress caused by the highest dose of aluminum. H2O2 treatment enabled high emergence but did not favor seedling survival or growth. The H2O2 did not increase SOD activity. The chlorophyll a fluorescence characteristics proved the sensitivity of canola to aluminum, but the presence of H2O2 maintained the stability and functionality of photosystem II.

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5059
Author(s):  
Katarzyna Możdżeń ◽  
Agnieszka Krajewska ◽  
Jan Bocianowski ◽  
Beata Jop ◽  
Agnieszka Synowiec

Caraway (Carum carvi L.) essential oil is a candidate for botanical herbicides. A hypothesis was formulated that the sand-applied maltodextrin-coated caraway oil (MCEO) does not affect the growth of maize (Zea mays L.). In the pot experiment, pre-emergence application of five doses of MCEO was tested on four maize cultivars up to the three-leaf growth stage. The morphological analyses were supported by the measurements of relative chlorophyll content (SPAD), two parameters of chlorophyll a fluorescence, e.g., Fv/Fm and Fv/F0, and fluorescence emission spectra. The analyzed MCEO contained 6.5% caraway EO with carvone and limonene as the main compounds, constituting 95% of the oil. The MCEO caused 7-day delays in maize emergence from the dose of 0.9 g per pot (equal to 96 g m−2). Maize development at the three-leaf growth stage, i.e., length of roots, length of leaves, and biomass of shoots and leaves, was significantly impaired already at the lowest dose of MCEO: 0.4 g per pot, equal to 44 g m−2. A significant drop of both chlorophyll a fluorescence parameters was noted, on average, from the dose of 0.7 g per pot, equal to 69 g m−2. Among the tested cultivars, cv. Rywal and Pomerania were less susceptible to the MCEO compared to the cv. Kurant and Podole. In summary, maize is susceptible to the pre-emergence, sand-applied MCEO from the dose of 44 g m−2.


Author(s):  
Francisco V. da S. Sá ◽  
Hans R. Gheyi ◽  
Geovani S. de Lima ◽  
Emanoela P. de Paiva ◽  
Rômulo C. L. Moreira ◽  
...  

ABSTRACT The objective of this study was to evaluate the interaction between water salinity and doses of nitrogen and phosphorus on chlorophyll a fluorescence and on the growth of West Indian Cherry (‘acerola’) plants in the initial growth stage. The research was carried out in a protected environment, in lysimeters filled with Regolithic Neosol of loamy clay texture and low initial phosphorus content. The experiment was conducted in a randomized block design, arranged in a factorial scheme with two factors, five levels of electrical conductivity of the irrigation water - ECw (0.6, 1.4, 2.2, 3.0 and 3.8 dS m-1) and four proportions of the recommendation of phosphorus/nitrogen - P/N (100:100, 140:100, 100:140 and 140:140% P/N of recommendation), with three replicates, and each plot consisted of one plant. Water salinity above 2.2 dS m-1 decreases the quantum efficiency of photosystem II and the growth of west indian cherry plants. Increase in nitrogen and/or phosphorus supply improves the energy stability of west indian cherry plants by reducing the effects of salt stress on the quantum efficiency of photosystem II. The increase of 40% in the nitrogen dose increased the chlorophyll a fluorescence, but did not influence the plant growth.


2005 ◽  
Vol 60 (5-6) ◽  
pp. 435-443 ◽  
Author(s):  
Yasemin Ekmekci ◽  
Andreas Bohms ◽  
Jennifer A. Thomson ◽  
Sagadevan G. Mundree

In this study, photochemical and antioxidant responses of the monocotyledonous resurrection plant Xerophyta viscosa Baker and the crab grass Digitaria sanguinalis L. under water deficit were investigated as a function of time. Water deficit was imposed by withholding irrigation for 21 d. Gas exchange and chlorophyll a fluorescence analyses indicated that the dehydration treatment caused photoinhibition in both species. The reduction in the photosynthesis rate in both species during water deficit probably contributed to the decline in the photochemical efficiency of PSII and electron transport rate. However, the stomatal conductance of both species did not change during treatment whereas the intercellular CO2 pressure increased after 10 d of water deficit treatment. These observations could be related to nonstomatal limitations. The increasing net transpiration rate of both species may have contributed to leaf cooling because of water limitations. Prolonged water deficit resulted in photosynthetic pigment chlorophyll (a + b) and carotenoids content loss in only D. sanguinalis. Both species especially D. sanguinalis had increased the level of anthocyanin after 15 d of treatment, possibly to prevent the damaging effect of photooxidation. The total SOD activity of D. sanguinalis was significantly different from X. viscosa during the treatment. The total peroxidase activity in D. sanguinalis was significantly higher than in X. viscosa. X. viscosa acclimated to water deficit with no ultimate apparent oxidative damage due to endogenous protective mechanisms of resurrection. In case of D. sanguinalis, water deficit induced considerable stress and possibly caused some oxidative damage, despite the upregulation of protection mechanisms.


2014 ◽  
Vol 64 (3) ◽  
pp. 273-279 ◽  
Author(s):  
Ewa Skórzyńska-Polit ◽  
Tadeusz Baszyński

Runner bean plants (<i>Phaseolus coccineus</i> L., cv. Piękny Jaś) grown hydroponically were treated with Cd (2.5 • 10<sup>-5</sup> M Cd in the form of 3CdSO<sub>4</sub> • 8H<sub>2</sub>O) at different stages of primary leaves development. Ten days after the metal treatment, the changes in leaf growth parameters and their PSII photochemistry were investigated. The younger were the plants exposed to Cd (at the initial growth stage of primary leaves) the stronger was the leaf area reduction, fresh weight decrease and increase of plastid pigment level. These changes were correlated with lower level of photosynthetic 0<sub>2</sub> evolution (75% of control) but chlorophyll a fluorescence measurements suggested an inhibitory effect of Cd on the acceptor side of PSII. With the development of primary leaves the sensitivity of plants to Cd increased. Cd treatment of plants at the final growth stage of the primary leaves caused slight changes in growth parameters compared with control, whereas the chlorophyll content and PSII activity (48% of control) significantly decreased. Analyses of fast chlorophyll a fluorescence kinetics revealed changes suggesting Cd-induced alterations of PSII complex extending on to their acceptor side and the reaction centre. Differential response of primary leaves to Cd depending on their growth stages indicated alterations of the adaptation mechanism in leaf cells of runner bean plants. The decrease in younger Cd-treated plants of photosynthetic activity was connected with disturbances in growth processes, however in plants treated with Cd at the final growth stage of the primary leaves it was resulted from destruction of the photosynthetic apparatus.


2021 ◽  
Vol 262 ◽  
pp. 112482
Author(s):  
Remika S. Gupana ◽  
Daniel Odermatt ◽  
Ilaria Cesana ◽  
Claudia Giardino ◽  
Ladislav Nedbal ◽  
...  

2021 ◽  
Vol 58 ◽  
pp. 102399
Author(s):  
Jason Hupp ◽  
Johnathan I.E. McCoy ◽  
Allen J. Millgan ◽  
Graham Peers

2020 ◽  
pp. 096032712098420
Author(s):  
Ahmet Topal ◽  
Arzu Gergit ◽  
Mustafa Özkaraca

We investigated changes in 8-hydroxy-2-deoxyguanosine (8-OHdG) activity which is a product of oxidative DNA damage, histopathological changes and antioxidant responses in liver and gill tissues of rainbow trout, following a 21-day exposure to three different concentrations of linuron (30 µg/L, 120 µg/L and 240 µg/L). Our results indicated that linuron concentrations caused an increase in LPO levels of liver and gill tissues ( p < 0.05). While linuron induced both increases and decreases in GSH levels and SOD activity, CAT activity was decreased by all concentrations of linuron ( p < 0.05). The immunopositivity of 8-OHdG was detected in the hepatocytes of liver and in the epithelial and chloride cells of the secondary lamellae of the gill tissues. Our results suggested that linuron could cause oxidative DNA damage by causing an increase in 8-OHdG activity in tissues, and it induces histopathological damage and alterations in the antioxidant parameters of the tissues.


Sign in / Sign up

Export Citation Format

Share Document