scholarly journals Use of Dental Volumetric Tomography for Dental Phenotyping In Amelogenesis Imperfecta

2016 ◽  
Vol 18 (1) ◽  
pp. 83
Author(s):  
Gina Murillo DDS, MSc ◽  
Carla Cob DDS ◽  
Natalia Mena DDS ◽  
Angie Valverde DDS ◽  
Belén Barrantes DDS ◽  
...  

Amelogenesis imperfecta (AI) describes often severe, largely Mendelian biomineralisation defects of tooth enamel. AI enamel can be abnormally thin, soft, fragile, pitted and/or badly discoloured, resulting in major morbidity as patients have difficulty maintaining oral hygiene, experience  low self-esteem due to poor aesthetics and report an inferior quality-of-life. Improved understanding of biomineralisation defects in AI would assist in clinical management of AI patients. Dental Volumetric Tomography (DVT, commonly known as Cone Beam CT scanning) is a diagnostic X ray based methodology that produces  three -dimensional anatomical images of the skeletal tissues (including the teeth).  The aim of this study was to investigate the use of DVT to provide detailed dental anatomy associated with AI.  A Morita Veraviewpocs 3D R 100 was used to generate high definition 3D digital images of the maxillae of eight AI-affected volunteers (ethics approval N 440–B2-334 U.C.R.).  Pulpal calcifications of varying size, Dens in Vaginitus, dental cysts, root fractures, retained teeth and anomalies in the position of the mandibular canal were all common findings. The data also revealed enamel surface irregularities in an unerupted tooth.  In conclusion, use of DVT in AI would facilitate phenotyping by providing identification of dental/oral defects with greater accuracy and definition compared with conventional panoramic radiographs. The data could also be used to aid diagnostics, e.g. by permitting discrimination between hypoplastic enamel (diminished enamel volume) and hypomineralized enamel (failure of normal biomineralization). However, given the high costs associated with DVT and the radiation risks for individual patients, it is best indicated as a research tool for academic and clinical research proposes. 

Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.


Author(s):  
H. Bertin ◽  
R. Bonnet ◽  
M. Anquetil ◽  
A.S. Delemazure ◽  
E. Mourrain-Langlois ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 5086
Author(s):  
Mazen F. Alkahtany ◽  
Saqib Ali ◽  
Abdul Khabeer ◽  
Shafqat A. Shah ◽  
Khalid H. Almadi ◽  
...  

This study aimed to investigate variations in the root canal morphology of maxillary second premolar (MSP) teeth using microcomputed tomography (micro-CT). Sixty (N = 60) human extracted MSPs were collected and prepared for micro-CT scanning. The duration for scanning a single sample ranged between 30 and 40 min and a three-dimensional (3-D) image was obtained for all the MSPs. The images were evaluated by a single observer who recorded the canal morphology type, number of roots, canal orifices, apical foramina(s), apical delta(s), and accessory canals. The root canal configuration was categorized in agreement with Vertucci’s classification, and any configuration not in agreement with Vertucci’s classification was reported as an “additional canal configuration”. Descriptive statistics (such as mean percentages) were calculated using SPSS software. The most common types agreeing with Vertucci’s classification (in order of highest to lowest incidence) were types I, III, V, VII, II, and VI. The teeth also exhibited four additional configurations that were different from Vertucci’s classification: types 2-3, 1-2-3, 2-1-2-1, and 1-2-1-3. A single root was found in 96.7% and the majority of the samples demonstrated two canals (73.3%). Further, 80% of the teeth showed one canal orifice. The number of apical foramina’s in the teeth was variable, with 56.7% having solitary apical foramen. The accessory canal was found in 33.3%, and apical delta was found in only 20% of the samples. Variable morphology of the MSPs was detected in our study. The canal configuration most prevalent was type 1; however, the results also revealed some additional canal types.


Author(s):  
M Ally ◽  
P Kullar ◽  
G Mochloulis ◽  
A Vijendren

Abstract Objective Microscopic surgery is currently considered the ‘gold standard’ for middle-ear, mastoid and lateral skull base surgery. The coronavirus disease 2019 pandemic has made microscopic surgery more challenging to perform. This work aimed to demonstrate the feasibility of the Vitom 3D system, which integrates a high-definition (4K) view and three-dimensional technology for ear surgery, within the context of the pandemic. Method Combined approach tympanoplasty and ossiculoplasty were performed for cholesteatoma using the Vitom 3D system exclusively. Results Surgery was performed successfully. The patient made a good recovery, with no evidence of residual disease at follow up. The compact system has excellent depth of field, magnification and colour. It enables ergonomic work, improved work flow, and is ideal for teaching and training. Conclusion The Vitom 3D system is considered a revolutionary alternative to microscope-assisted surgery, particularly in light of coronavirus disease 2019. It allows delivery of safe otological surgery, which may aid in continuing elective surgery.


2015 ◽  
Vol 43 (2) ◽  
Author(s):  
Ritsuko Kimata Pooh ◽  
Asim Kurjak

AbstractRecent development of three-dimensional (3D) high definition (HD) ultrasound has resulted in remarkable progress in visualization of early embryos and fetuses in sonoembryology. The new technology of HDlive assesses both structural and functional developments in the first trimester with greater reliably than two-dimensional (2D) ultrasound. The ability to visualize not only fetal face, hands, fingers, feet, and toes, but also amniotic membranes, is better with volumetric ultrasound than 2D ultrasound. In this article, detailed and comprehensive structures of normal and abnormal fetuses depicted by 3D HDlive are presented, including various faces of Down’s syndrome and holoprosencephaly, as well as low-set ear and finger/toe abnormalities from the first trimester. Three-dimensional HDlive further “humanizes” the fetus, enables detailed observation of the fetal face in the first trimester as shown in this article, and reveals that a small fetus is not more a fetus but a “person” from the first trimester. There has been an immense acceleration in understanding of early human development. The anatomy and physiology of embryonic development is a field where medicine exerts greatest impact on early pregnancy at present, and it opens fascinating aspects of embryonic differentiation. Clinical assessment of those stages of growth relies heavily on 3D/four-dimensional (4D) HDlive, one of the most promising forms of noninvasive diagnostics and embryological phenomena, once matters for textbooks are now routinely recorded with outstanding clarity. New advances deserve the adjective “breathtaking”, including 4D parallel study of the structural and functional early human development.


2021 ◽  
Vol 40 ◽  
Author(s):  
Lizeth Paola Naranjo Jiménez ◽  
Myriam Adriana Muñoz Briceño ◽  
Ángela Suárez Castillo ◽  
Claudia Patricia Lamby Tovar ◽  
Sandra Janeth Gutierrez Prieto

Background: Amelogenesis imperfecta (AI) is a hereditary condition that affects the structure of tooth enamel and causes sensitivity, predisposition to cavities, and psychological problems. In Colombia, its frequency, magnitude, distribution, and behavior are unknown, so it is necessary to carry out prevalence studies to implement preventive actions. Purpose: To determine the prevalence of AI in patients who have attended the Pontificia Universidad Javeriana clinics in Bogotá. Methods: A retrospective cross-sectional observational study was carried out, whose sample included 1,394 medical records of patients who attended between January 2015 and December 2017. Results: The prevalence of AI was 0.6 %, corresponding to 8 people affected, 4 men and 4 women between the ages of 9 and 10 years. The most frequent phenotype was hypoplastic in 7 patients (87.5 %) and one person had a hypocalcified phenotype (12.5 %). Taurodontism was the most frequent anomaly in the 8 patients (100 %). Seven of the eight patients (87.5 %) had a family history of AI. All the individuals had a lower-middle socioeconomic level and came from urban areas. Conclusions: This study is the first approximation to determine the prevalence of AI in a group of the Colombian population. Although the prevalence was low, it is comparable with the findings of other studies.


Sign in / Sign up

Export Citation Format

Share Document