scholarly journals Diversity and biostratigraphy of the late Oligocene-late Miocene sand dollars (Echinoidea: Scutelliformes) of Argentina and Uruguay

2021 ◽  
Vol 69 (Suppl.1) ◽  
pp. 35-50
Author(s):  
Claudia-J. Del Río ◽  
Sergio Martínez

Introduction: Scutelliforms were diverse and widespread in shallow marine environments during Neogene times in South America. Nevertheless, they have almost never been used as biostratigraphic tools. Objective: To provide a refined stratigraphic frame useful for calibrating temporal dimensions of scutelliform diversity from Argentina and Uruguay and its correlation with the molluscan assemblages previously proposed. Methods: A detailed survey of their geographic and stratigraphic provenance was carried out. We revised both the bibliography and collections (institutional and from our own field work). Results: The group is represented by 14 species belonging to six genera, and four assemblages were identified. Numerical dates of the Neogene marine rocks obtained recently allowed their placement in a chronological scheme: “Iheringiella” sp. A is restricted to the late Oligocene, the genera Camachoaster and “Eoscutella” and the species Monophoraster telfordi to the early Miocene, Abertella gualichensis and Abertella miskellyi to the middle Miocene, and Monophoraster duboisi, Amplaster coloniensis and Amplaster ellipticus to the late Miocene. Non-lunulate scutelliforms are not restricted to the late Oligocene as previously supposed. The oldest occurrence of the genus Monophoraster corresponds to the early Miocene, and along with Iheringiella are long-living taxa that embrace the 25.3 Ma-18.1 Ma (Iheringiella patagonensis) and approximately 15 Ma-6.48 Ma (Monophoraster darwini) intervals. The presence of Iheringiella in the early Miocene of northeastern Patagonia is corroborated, reaching there its northernmost distribution. Monophoraster darwini has a temporal range from the late Miocene (where it was previously thought to be restricted) back to the middle Miocene, since this is the species yielded in the well-known and discussed “Monophoraster and Venericor Beds”. Conclusions: The Paleogene-Neogene scutelliforms of Argentina and Uruguay range from the late Oligocene to the late Miocene. There is a good correspondence among the numerical ages, molluscan biozones and scutelliform assemblages.

2004 ◽  
Vol 78 (6) ◽  
pp. 1097-1122 ◽  
Author(s):  
Claudia Julia del Río

Pectinids are the most abundant and widely distributed taxa in the Tertiary marine beds of Patagonia. Along with other very common molluscan species, they characterize five assemblages, from oldest to youngest: 1) the Oligocene Panopea sierrana-Parinomya patagonensis Assemblage; 2) the Late Oligocene–Early Miocene Jorgechlamys centralis–Reticulochlamys borjasensis Assemblage; 3) the Early Miocene Reticulochlamys zinsmeisteri–Struthiolarella patagoniensis–Pleuromeris cruzensis Assemblage; 4) the Early Miocene Pseudoportlandia glabra–Antimelatoma quemadensis Assemblage; and 5) the latest Early Miocene–earliest Middle Miocene Nodipecten sp.–Venericor abasolensis–Glycymerita camaronesia Assemblage. A brief analysis of the origin and composition of these Tertiary Patagonian molluscan faunas is provided. Striking compositional changes occurred through time, recorded mainly in the Late Paleocene, Late Eocene, Late Oligocene–Early Miocene, and Late Miocene.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Lili Sarmili ◽  
Dwi Indriati ◽  
Tites Stiawan

Secara geologi, Cekungan Bone terletak diantara Lengan Sulawesi Selatan dan Lengan Sulawesi Tenggara. Cekungan Bone terbentuk pada Paleogen-Neogen dan telah mengalami beberapa kali proses tektonik serta aktivitas magmatik. Morfologi Cekungan Bone dikontrol oleh beberapa sistem sesar yaitu sesar Walanae, Palukoro dan lainnya. Sesar-sesar ini selama Plio-Pleistosen hingga Kuarter mempengaruhi proses sedimentasi pada cekungan ini. Pada tahap awal, cekungan Bone terbentuk akibat dari proses subduksi lalu berkembang menjadi cekungan intermontane. Didalam Cekungan Bone tersebut terdapat beberapa sekuen yang ditafsirkan dari penampang seismik pantul, dimulai dari Kala Paleosen sampai Oligosen Awal diendapkan sekuen A. Sekuen A ditutupi Sekuen B secara tidak selaras pada Kala Oligosen Awal sampai Oligosen Akhir. Di atas sekuen B ini diendapkan Sekuen C secara tidak selaras yang mulai terbentuk pada umur Oligosen Akhir hingga Miosen Awal. Sekuen berikutnya diendapkan Sekuen D yang terbentuk pada saat Miosen Awal hingga Miosen Akhir dan ditutupi Sekuen E pada lingkungan laut dangkal hingga darat. Endapan yang paling atas adalah sekuen  F yang berumur Kuarter dan sebagai sedimen pengisi lembah-lembah yang dipengaruhi oleh adanya sesar Walanae yang teraktifkan kembali. Kata Kunci : cekungan Intermontane, sesar Walanae yang teraktifkan kembali, cekungan Bone Geologically, the Bone Basin is situated in between south Sulawesi Arm and southeast Sulawesi Arm. The Basin was formed on the Paleogene-Neogene time and has repeatedly processed in terms of tectonics and magmatic activities. The morphology of Bone Basin was formed by some faults system, there are Walanae Fault, Palukoro Fault and others. These faults during Plio-Pleistocene up to Quaternary times were affected their sediment of the basin. In the beginning, the Bone Basin was formed by subduction and then developed become intramontane basin. In The Bone basin there are some sequences that are interpreted from seismic reflection, started from Palaeocene to Early Oligocene was marked by A sequence. Then, it was overlied unconformity by B sequence of Early Oligocene to Late Oligocene. On the top of B sequence was deposited unconformitily by C sequence which was formed from late Oligocene to Early Miocene. Furthermore, D sequence was deposited during Early Miocene to Late Miocene and covered by E sequence of shallow marine to terrestrial environments. The youngest is F sequence which formed in the Quaternary age and as a channel filed sediment was influenced by reactivated of Walanae Fault.Keywords : Intramontane basin, reactivated of Walanae Fault, Bone Basin


1988 ◽  
Vol 62 (3) ◽  
pp. 463-467 ◽  
Author(s):  
Villarroel A. Carlos ◽  
Larry G. Marshall

A new argyrolagoid marsupial, Hondalagus altiplanensis n. gen., n. sp., from the middle Miocene (Santacrucian–Friasian) age locality of Quebrada Honda in southernmost Bolivia represents the smallest and most specialized member of the family Argyrolagidae known. The lower molars are hypselodont and lack vertical grooves labially and lingually, and M4 is greatly reduced relative to M3. In overall size and structure, H. altiplanensis compares best with Microtragulus catamarcensis (Kraglievich, 1931) from rocks of late Miocene (Huayquerian) age in northwest Argentina. Hondalagus altiplanensis demonstrates that the adaptive radiation of argyrolagoids was much greater than previously envisioned, and that generic differentiation of known taxa occurred no later than early–middle Miocene time in South America.


1998 ◽  
Vol 17 (2) ◽  
pp. 125-130 ◽  
Author(s):  
J. Szczechura

Abstract. Late Middle Miocene (Upper Badenian) strata of the Fore-Carpathian Depression of Poland yield a shallow-water ostracod fauna which contains the species Triebelina raripila (G. W. Müller, 1894) and Carinocythereis carinata (Roemer, 1838). The palaeobiogeographic distribution of the two main species suggests, that in the late Middle Miocene, Central Paratethys was still connected to the Mediterranean, although still separated from the Eastern Paratethys and from southeastern Eurasia. The continuous occurrence of Triebelina raripila and Carinocythereis carinata in the Mediterranean basins, from the Early Miocene to Recent, indicates that marine conditions existed throughout, thereby allowing them to survive the Late Miocene salinity crisis.


The general geology of the New Hebrides is summarized in terms of three volcanic and two main sedimentary episodes. Calc-alkaline volcanics ol the first episode occur on the western islands and accumulated mainly on the submarine slopes below small reef-fringed volcanic islands in Late Oligocene to Middle Miocene times. During the Late Miocene and Early Pliocene wholly submarine tholeiitic or high-Al volcanics accumulated in the eastern and southern part of the New Hebrides while calcareous sediments were forming in the western islands. During the third volcanic phase, of Pliocene to Recent age, regional uplift has led to most of the volcanics being subaerial while extensive flights of limestone terraces occur round the older islands. In consequence the land area of the New Hebrides has increased rapidly during Quaternary times. The landforms produced are briefly described.


2020 ◽  
pp. jgs2020-081
Author(s):  
Torin Cannings ◽  
Elizabeth M. Balmer ◽  
Giovanni Coletti ◽  
Ryan B. Ickert ◽  
Dick Kroon ◽  
...  

The existing chronostratigraphic framework in NW Cyprus of two-phase, Early and Late Miocene reef and associated facies development is tested and improved using a combination of calcareous nannofossil, benthic and planktic foraminiferal, and also Sr isotope dating. Following localised Late Oligocene neritic carbonate deposition (e.g. benthic foraminiferal shoals), reefs and related facies (Terra Member) began to develop c. 24 Ma (Aquitanian) and terminated c. 16 Ma (end-Burdigalian). Early Miocene reef and marginal facies were then extensively redeposited as multiple debris-flow deposits until c. 13.7 Ma, influenced by a combination of global sea-level fall (related to growth of the East Antarctic Ice Sheet) and local- to regional-scale tectonics. Reef growth and related deposition resumed (Koronia Member) c. 9.1 Ma (Tortonian), then terminated by c. 6.1 Ma (mid-Messinian), followed by the Messinian salinity crisis. Neritic accumulation in NW Cyprus began earlier (Late Oligocene), than in southern Cyprus (Early Miocene). The Early Miocene reefs developed on a c. N-S-trending structural high in the west (Akamas Peninsula area) whereas the Late Miocene reefs developed on both flanks of the neotectonic Polis graben. The two-phase reef development is mirrored in SE Cyprus and in some other Mediterranean areas; e.g. S Turkey, Israel, Italy, S Spain.Supplementary material: GPS Locations of dated samples, the Sr isotope method and the samples examined for planktic foraminifera biostratigraphy are available at https://doi.org/10.6084/m9.figshare.c.5205315.


1990 ◽  
Vol 3 (4) ◽  
pp. 739 ◽  
Author(s):  
PE Berry ◽  
JJ Skvarla ◽  
D PartridgeA ◽  
MK Macphail

Pollen of Diporites aspis, corresponding to the extant genus Fuchsia, is reported from Late Oligocene to Early Miocene strata in two new localities in Australia. They extend the range of Diporites pollen in Australia from the Otway Basin in Victoria to the Capricorn Basin offshore Queensland, and they bring to six the number of Diporites specimens in Australia, from five different sites. These reports establish the presence of Fuchsia in Australasia from at least the Early Oligocene, when mesic forests were widespread across Australia. Fuchsia reached New Zealand by the Late Oligocene and has survived there until the present, but is not known to have survived in Australia past the late Miocene. These results support the hypothesis of an early Tertiary origin of the genus in southern temperate forests.


1997 ◽  
Vol 71 (4) ◽  
pp. 610-615 ◽  
Author(s):  
T. J. DeVries ◽  
G. J. Vermeij

The new genus Herminespina comprises extinct South American species of “Thais”-like ocenebrine gastropods with prominent colabral folds and a labral spine. Geographic range extensions into Peru are reported for the late Pliocene H. mirabilis and the late Miocene to Pliocene H. philippii, both previously known only from Chile. A new early Pliocene species, H. saskiae, is described from the Sacaco Basin of southern Peru and compared with an early Miocene muricid from Peru and Chile, Acanthina katzi. Herminespina is one of several genera of Neogene muricids in western South America that bear labral spines.


2016 ◽  
Vol 46 (2) ◽  
pp. 301-328 ◽  
Author(s):  
Mario Vicente Caputo ◽  
Emilio Alberto Amaral Soares

ABSTRACT: The development of the transcontinental Amazon River System involved geological events in the Andes Chain; Vaupés, Purus and Gurupá arches; sedimentary basins of the region and sea level changes. The origin and age of this river have been discussed for decades, and many ideas have been proposed, including those pertaining to it having originated in the Holocene, Pleistocene, Pliocene, Late Miocene, or even earlier times. Under this context, the geology of the sedimentary basins of northern Brazil has been analyzed from the Mesozoic time on, and some clarifications are placed on its stratigraphy. Vaupés Arch, in Colombia, was uplifted together with the Andean Mountains in the Middle Miocene time. In the Cenozoic Era, the Purus Arch has not blocked this drainage system westward to marine basins of Western South America or eastward to the Atlantic Ocean. Also the Gurupá Arch remained high up to the end of Middle Miocene, directing this drainage system westward. With the late subsidence and breaching of the Gurupá Arch and a major fall in sea level, at the beginning of the Late Miocene, the Amazon River quickly opened its pathway to the west, from the Marajó Basin, through deep headward erosion, capturing a vast drainage network from cratonic and Andean areas, which had previously been diverted towards the Caribbean Sea. During this time, the large siliciclastic influx to the Amazon Mouth (Foz do Amazonas) Basin and its fan increased, due to erosion of large tracts of South America, linking the Amazon drainage network to that of the Marajó Basin. This extensive exposure originated the Late Miocene (Tortonian) unconformity, which marks the onset of the transcontinental Amazon River flowing into the Atlantic Ocean.


2020 ◽  
Vol 76 (2) ◽  
pp. 325-337
Author(s):  
Martin Pickford ◽  
Tanju Kaya ◽  
Erhan Tarhan ◽  
Derya Erylmaz ◽  
Serdar Mayda

Turkey is known for the wealth of fossil suids found in deposits of middle Miocene, late Miocene and Plio-Pleistocene levels but material of this family from early Miocene and Palaeogene deposits is rare in the country, one of the few published occurrences being from Şemsettin (Kumartaş Formation, MN 4, Çankiri-Çorum Basin). For this reason, it is interesting to record the presence of small suid remains in the Soma Formation at Sabuncubeli (Manisa, SW Anatolia) in deposits correlated to MN 3 (early Miocene) and thus the earliest known Turkish members of the family. The upper and lower teeth are herein attributed to a new genus and species (Prolistriodon smyrnensis) of Listriodontinae because, in a nascent way, they show a suite of derived morphological features such as upper central incisors with apical sulci, and upper molars with lingual precrista, found in listriodonts but not in Kubanochoerinae, Palaeochoerinae, Tetracondontinae, Hyotheriinae, Namachoerinae, Cainochoerinae or Suinae.


Sign in / Sign up

Export Citation Format

Share Document