SOUTH PATAGONIA: WIND/HYDROGEN/COAL SYSTEM WITH REDUCED CO2 EMISSIONS

Author(s):  
G. Spazzafumo

Wind is a significant renewable energy source in Patagonia, which could generate a very large amount of electrical energy. However, it is not possible to put such a large amount of energy on to the grid due to instability issues. Electrolysis could facilitate the storage of such energy in the form of hydrogen, which could be used for peak power production or for vehicles. However, hydrogen storage and distribution are still very expensive. On the other hand, South Patagonia has reserves of coal which exploitation is not easy. One solution could be underground coal gasification. Unfortunately, using coal results in high emissions of carbon dioxide. Hydrogen from wind energy could be the solution to convert coal to methane and to eventually generate electrical power. In this way, a large amount of renewable energy could be introduced to the energy system with a reduction in the emissions of carbon dioxide.

2021 ◽  
Vol 342 ◽  
pp. 04007
Author(s):  
Sorina Anutoiu ◽  
Ion Dosa ◽  
Dan Codrut Petrilean

The main objective of actual energy policies around the world is the transition to renewable energy. EIA forecasts nearly 50% increase in world energy usage by 2050, which is hard to achieve using only renewable energy. For year 2019 the electricity production in EU relies mainly on conventional thermal (42.8 %) and nuclear energy sources (26.7%). The accelerated transition to electrical cars puts more pressure on energy producers. As a result, in order to match the ever-growing demand of electrical energy, the conventional thermal energy generation will play a key role, among them coal-based production. In order to meet the environmental goals and for sustainable production of electrical power, energy assessment of power production of coal-based power plants must be performed. The purpose of this paper is to perform an energy assessment of the electrical power production, focusing on a key component of this, the steam turbine. The performance characteristics of the turbine in condensing operation were determined. A proper efficiency of the turbine will have a significant impact on sustainable production of electricity.


Author(s):  
Diana K. Grauer ◽  
Michael E. Reed

This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.


Author(s):  
Adeoye Samuel ◽  
◽  
Oladimeji TT ◽  

The goal of power sector in Nigeria is to efficiently and reliably transmit electrical power to all parts of the country which are made up of thirty-six states of the federation and the federal capital territory. The constituents of electrical power system are the generation, transmission, distribution and the utilization of electrical energy. There is gross power imbalance between the generation and the required power demand which has culminated into a defective economy in the last three decades. This paper therefore examines the power imbalance between the generation and power demand by the consumers and therefore stresses the need to harness the opportunity of renewable energy generation close to the gap between the power generation and power demand. This will help in transmitting and distributing efficient, effective, reliable power to consumers and improve both human and capital development. The availability of renewable energy sources such as sun, wind and small hydro power will be explored for the future of power generation in the country to fill in the gap between power generation and demand in Nigeria


2019 ◽  
Vol 8 (4) ◽  
pp. 7840-7844

Renewable energy system in electrical power generation is one of important field of electrical engineering due to its source is natural, reusable and environmental pollution free and cost free. There are renewable energies such as wind, solar and so on. The wind is a free, clean, and inexhaustible energy source. It has served mankind well for many centuries by propelling ships and driving wind turbines to pump water. It has become one of the most attractive energy system in several decades due to rich availability. The important proposed contribution in this work is to enhance the efficiency of renewable energy using AEROSTATIC WAY OF HARVESTING WIND ENERGY that allows turbines to capture as much as possible wind by increase in the altitude at which is the turbine is placed. Which is done by attaching the turbine to aerostat and the aim of the study is to extract maximum energy of the turbine and transmit it to grid, storage device with suitable converters and controllers.


Author(s):  
Archana Sudhakar Talhar ◽  
Sanjay B. Bodkhe

This paper gives a review of energy scenario in India and other countries. Today’s demand of the world is to minimize greenhouse gas emissions, during the production of electricity. Henceforth over the world, the production of electrical power is changing by introducing abundantly available renewable energy sources like sun and wind. But, because of the intermittent nature of sustainable power sources, the electrical power network faces many problems, during the transmission and distribution of electricity. For resolving these issues, Electrical Energy Storage (EES) is acknowledged as supporting technology. This paper discusses about the world electrical energy scenario with top renowned developed countries in power generation and consumption. Contribution of traditional power sources changed after the introduction of renewable energy sources like sun and wind. Worldwide Agencies are formed like International Energy Agency (IEA), The Central Intelligence Agency, (CIS) etc. The main aim of these agencies is to provide reliable, affordable and clean energy. This paper will discuss about the regulatory authority and government policies/incentives taken by different countries.  At the end of this paper, author focuses on obstacles in implementation, development and benefits of renewable energy.


1975 ◽  
Vol 15 (05) ◽  
pp. 425-436 ◽  
Author(s):  
C.F. Magnani ◽  
S.M. Farouq Ali

Abstract This investigation focuses on mathematical modeling of the process of underground gasification of coal by the stream method. A one-dimensional, steady-state model consisting of five coupled differential equations was formulated, and the solution, extracted analytically, was used to develop closed-form expressions for the parameters influencing coal gasification. The model then was used for interpreting field performance curves, predicting the results of The performance curves, predicting the results of The field tests, and ascertaining the over-all process sensitivity to the input variables. The usefulness of the model was shown by establishing the parameters influencing the success or failure of parameters influencing the success or failure of an underground gasification project. Introduction One method of eliminating many of the technological and environmental difficulties encountered during the production of synthetic gas through aboveground coal gasification involves gasifying cod in situ. This process, known as underground coal gasification, was first proposed in 1868 by Sir William Siemens and is based on the controlled combustion of coal in situ. This in-situ combustion results in the production of an artificial or synthetic gas that is rich in carbon dioxide, carbon monoxide, hydrogen, and hydrocarbon gases. Despite the fact that reaction stoichiometry is a moot element of underground coal gasification, it is nonetheless believed thatcarbon dioxide is formed by the partial oxidation of coal,carbon monoxide is generated by the subsequent reduction of carbon dioxide, andthe hydrogen and hydrocarbon gases result from the water-gas reaction and carbonization of coal, respectively. To effect the controlled combustion of coal in situ, the coal seam first must be ignited and a means must be provided for supporting combustion (through injection of a suitable gasification agent) and producing the gases generated underground. Fig. 1 presents a schematic diagram of an underground gasification system that complies with these requirements. This approach to gasifying coal is known as the stream or channel method and necessitates drilling two parallel galleries, one serving as an injection gas inlet and the other as a producer gas outlet. These wells are then linked by a borehole drilled horizontally through the coal seam. Ignition occurs in the coal seam at the gas inlet and proceeds in the direction of flow. The combustion front thus generated moves essentially perpendicular to the direction of gas flow. perpendicular to the direction of gas flow.Since the technological inception of underground gasification, over 1,500 publications have appeared in the literature that bear testimony to the absence of a complete, legitimate, theoretical analysis of the underground gasification process. Given this observation, it is the basis of this paper that progress in underground coal-gasification research progress in underground coal-gasification research has suffered from the absence of "interpretative theory"; that is, it has suffered from a lack of logical, physical, and mathematical analysis of the governing and underlying aerothermochemical principles. The difficulties in formulating a principles. The difficulties in formulating a mathematical model adequately describing the numerous phenomena involved during coal gasification are indeed formidable. SPEJ P. 425


Utilization of renewable energy for the reduction of fuel consumption and green house gas (GHG) emissions in the shipping industry has been increased rapidly in the recent years. Wind energy is a clean renewable energy with no pollution which is abundantly available at sea. This paper proposes two different possible configurations of connecting wind power energy into the ship’s main grid bus system . Wind electrical energy output has been connected to ship’s main ac bus system in one configuration and it is connected to ship’s main dc bus system. Even though Wind assisted ship propulsion (WASP) had been started already in the last decades in the form of wing sails, kites, Flettener rotor etc which could assist auxiliary propulsion of the ships, the application of wind power generator on the ship is not often applied. Therefore this paper has a relevant significance in applying wind electrical energy for the marine electrical power system needs. This paper also reveals the benefits and challenges in the area of onboard wind generation and opens future research possibilities in integrating wind energy into marine industry.


Tehnika ◽  
2021 ◽  
Vol 76 (5) ◽  
pp. 595-602
Author(s):  
Branislav Petrović ◽  
Milan Gojak

The sustainable development of energy systems does not only involve the use of renewable energy resources but the increase in their efficiency as well, enabling society to maximise the benefits of their consumption. The production of electrical energy from clean and renewable sources contributes to lowered fossil fuel exploitation and the reduction of its damaging effect on the environment. This is a way to reach the global target of sustainable development - striking a balance between resource consumption and the achievable natural cycle regeneration. Environmental protection is in the focus of attention. Namely, when energy system sustainability is assessed, in addition to the ecological sustainability assessment (based on life cycle analysis - LCA), attention should be paid to the decrease in energy quality in energy processes (exergy loss). This paper presents the thermodynamic approach to energy system sustainability assessment by applying life cycle exergy analysis (LCEA). The key issue is the assessment of systems which use sustainable energy sources: the wind turbine and the stand-alone photovoltaic solar system.


Sign in / Sign up

Export Citation Format

Share Document