An Evaluation of the EOR Potential in Shale Oil Recovery by Cyclic Natural Gas Injection

Author(s):  
Talal Gamadi ◽  
James J. Sheng
2021 ◽  
Author(s):  
Lijuan Huang ◽  
Zongfa Li ◽  
Shaoran Ren ◽  
Yanming Liu

Abstract The technology of air injection has been widely used in the second and tertiary recovery in oilfields. However, due to the injected air and natural gas will explode, the safety of the gas injection technology has attracted much attention. Gravity assisted oxygen-reduced air flooding is a new method that eliminates explosion risks and improves oil recovery in large-dip oil reservoirs or thick oil layers. The explosion limit data of different components of natural gas under high pressure were obtained through explosion experiments, which verified the suppression effect of oxygen-reduced air on explosions. The influence of natural gas composition and concentration on explosion limits was also investigated. In addition, a rotatable displacement device was used to study the feasibility of gravity assisted oxygen-reduced air injection for improving the heavy oil reservoirs recovery. Under pressure and temperature conditions of 20MPa and 371K, the sand-filled gravity flooding experiments with different dip angles were carried out using oxygen-reduced air with an oxygen content of 8%. The results show that with the increase of the reservoir dip, the pore volume of the injected fluid at the gas channeling point, the efficient development time of gas injection, and the final displacement efficiency of gas injection development all increase through gravity stabilization caused by gravity differentiation. In the presence of a dip angle, the cumulative oil production before the gas breakthrough point exceeded 80% of the oil production during the entire production process, indicating that gravity assisted oxygen-reduced air flooding is an effective and safe improving oil recovery method. Finally, the explosion risk of each link of the air injection process is analyzed, and the high-risk area and the low-risk area are determined.


2021 ◽  
Author(s):  
Hilario Martin Rodriguez ◽  
Yalda Barzin ◽  
Gregory James Walker ◽  
Markus Gruenwalder ◽  
Matias Fernandez-Badessich ◽  
...  

Abstract This study has double objectives: investigation of the main recovery mechanisms affecting the performance of the gas huff-n-puff (GHnP) process in a shale oil reservoir, and application of optimization techniques to modelling of the cyclic gas injection. A dual-permeability reservoir simulation model has been built to reproduce the performance of a single hydraulic fracture. The hydraulic fracture has the average geometry and properties of the well under analysis. A history match workflow has been run to obtain a simulation model fully representative of the studied well. An optimization workflow has been run to maximize the cumulative oil obtained during the GHnP process. The operational variables optimized are: duration of gas injection, soaking, and production, onset time of GHnP, injection gas flow rate, and number of cycles. This optimization workflow is launched twice using two different compositions for the injection gas: rich gas and pure methane. Additionally, the optimum case obtained previously with rich gas is simulated with a higher minimum bottom hole pressure (BHP) for both primary production and GHnP process. Moreover, some properties that could potentially explain the different recovery mechanisms were tracked and analyzed. Three different porosity systems have been considered in the model: fractures, matrix in the stimulated reservoir volume (SRV), and matrix in the non-SRV zone (virgin matrix). Each one with a different pressure profile, and thus with its corresponding recovery mechanisms, identified as below: Vaporization/Condensation (two-phase system) in the fractures.Miscibility (liquid single-phase) in the non-SRV matrix.Miscibility and/or Vaporization/Condensation in the SRV matrix: depending on the injection gas composition and the pressure profile along the SRV the mechanism may be clearly one of them or even both. Results of this simulation study suggest that for the optimized cases, incremental oil recovery is 24% when the gas injected is a rich gas, but it is only 2.4% when the gas injected is pure methane. A higher incremental oil recovery of 49% is obtained, when injecting rich gas and increasing the minimum BHP of the puff cycle above the saturation pressure. Injection of gas results in reduction of oil molecular weight, oil density and oil viscosity in the matrix, i.e., the oil gets lighter. This net decrease is more pronounced in the SRV than in the non-SRV region. The incremental oil recovery observed in the GHnP process is due to the mobilization of heavy components (not present in the injection gas composition) that otherwise would remain inside the reservoir. Due to the main characteristic of the shale reservoirs (nano-Darcy permeability), GHnP is not a displacement process. A key factor in success of the GHnP process is to improve the contact of the injected gas and the reservoir oil to increase the mixing and mass transfer. This study includes a review of different mechanisms, and specifically tracks the evolution of the properties that explain and justify the different identified mechanisms.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3961
Author(s):  
Haiyang Yu ◽  
Songchao Qi ◽  
Zhewei Chen ◽  
Shiqing Cheng ◽  
Qichao Xie ◽  
...  

The global greenhouse effect makes carbon dioxide (CO2) emission reduction an important task for the world, however, CO2 can be used as injected fluid to develop shale oil reservoirs. Conventional water injection and gas injection methods cannot achieve desired development results for shale oil reservoirs. Poor injection capacity exists in water injection development, while the time of gas breakthrough is early and gas channeling is serious for gas injection development. These problems will lead to insufficient formation energy supplement, rapid energy depletion, and low ultimate recovery. Gas injection huff and puff (huff-n-puff), as another improved method, is applied to develop shale oil reservoirs. However, the shortcomings of huff-n-puff are the low sweep efficiency and poor performance for the late development of oilfields. Therefore, this paper adopts firstly the method of Allied In-Situ Injection and Production (AIIP) combined with CO2 huff-n-puff to develop shale oil reservoirs. Based on the data of Shengli Oilfield, a dual-porosity and dual-permeability model in reservoir-scale is established. Compared with traditional CO2 huff-n-puff and depletion method, the cumulative oil production of AIIP combined with CO2 huff-n-puff increases by 13,077 and 17,450 m3 respectively, indicating that this method has a good application prospect. Sensitivity analyses are further conducted, including injection volume, injection rate, soaking time, fracture half-length, and fracture spacing. The results indicate that injection volume, not injection rate, is the important factor affecting the performance. With the increment of fracture half-length and the decrement of fracture spacing, the cumulative oil production of the single well increases, but the incremental rate slows down gradually. With the increment of soaking time, cumulative oil production increases first and then decreases. These parameters have a relatively suitable value, which makes the performance better. This new method can not only enhance shale oil recovery, but also can be used for CO2 emission control.


2016 ◽  
Vol 19 (02) ◽  
pp. 350-355 ◽  
Author(s):  
T.. Wan ◽  
J. J. Sheng ◽  
M. Y. Soliman ◽  
Y.. Zhang

Summary The current technique to produce shale oil is to use horizontal wells with multistage stimulation. However, the primary oil-recovery factor is only a few percent. The low oil recovery and abundance of shale reservoirs provide a huge potential for enhanced oil-recovery (EOR) process. Well productivity in shale oil-and-gas reservoirs primarily depends on the size of fracture network and the stimulated reservoir volume (SRV) that provides highly conductive conduits to communicate the matrix with the wellbore. The fracture complexity is critical to the well-production performance, and it also provides an avenue for injected fluids to displace the trapped oil. However, the disadvantage of gasflooding in fractured reservoirs is that injected fluids may break through to production wells by means of the fracture network. Therefore, a preferred method is to use cyclic gas injection to overcome this problem. In this paper, we use a numerical-simulation approach to evaluate the EOR potential in fractured shale-oil reservoirs by cyclic gas injection. Simulation results indicate that the stimulated fracture network contributes significantly to the well productivity by means of its large contact area with the matrix, which prominently enhances the macroscopic sweep efficiency in secondary cyclic gas injection. In our previous simulation work, the EOR potential was evaluated in hydraulic planar-traverse fractures without considering the propagation of a natural-fracture network. In this paper, we examine the effect of fracture networks on shale oilwell secondary-production performance. The impact of fracture spacing and stress-dependent fracture conductivity on the ultimate oil recovery is investigated. The results presented in this paper demonstrate that cyclic gas injection has EOR potential in shale-oil reservoirs. This paper focuses on evaluating the effect of fracture spacing, the size of the fracture network, fracture connectivity (uniform and nonuniform), and stress-dependent fracture-network conductivity on well-production performance of shale-oil reservoirs by secondary cyclic gas injection.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2346
Author(s):  
Mirosław Wojnicki ◽  
Jan Lubaś ◽  
Marcin Warnecki ◽  
Jerzy Kuśnierczyk ◽  
Sławomir Szuflita

Crucial oil reservoirs are located in naturally fractured carbonate formations and are currently reaching a mature phase of production. Hence, a cost-effective enhanced oil recovery (EOR) method is needed to achieve a satisfactory recovery factor. The paper focuses on an experimental investigation of the efficiency of water alternating sour and high-nitrogen (~85% N2) natural gas injection (WAG) in mixed-wetted carbonates that are crucial reservoir rocks for Polish oil fields. The foam-assisted water alternating gas method (FAWAG) was also tested. Both were compared with continuous water injection (CWI) and continuous gas injection (CGI). A series of coreflooding experiments were conducted within reservoir conditions (T = 126 ℃, P = 270 bar) on composite cores, and each consisted of four reservoir dolomite core plugs and was saturated with the original reservoir fluids. In turn, some of the experiments were conducted on artificially fractured cores to evaluate the impact of fractures on recovery efficiency. The performance evaluation of the tested methods was carried out by comparing oil recoveries from non-fractured composite cores, as well as fractured. In the case of non-fractured cores, the WAG injection outperformed continuous gas injection (CGI) and continuous water injection (CWI). As expected, the presence of fractures significantly reduced performance of WAG, CGI and CWI injection modes. In contrast, with regard to FAWAG, deployment of foam flow in the presence of fractures remarkably enhanced oil recovery, which confirms the possibility of using the FAWAG method in situations of premature gas breakthrough. The positive results encourage us to continue the research of the potential uses of this high-nitrogen natural gas in EOR, especially in the view of the utilization of gas reservoirs with advantageous location, high reserves and reservoir energy.


2017 ◽  
Vol 31 (5) ◽  
pp. 4951-4965 ◽  
Author(s):  
Nasser M. Al Hinai ◽  
A. Saeedi ◽  
Colin D. Wood ◽  
R. Valdez ◽  
Lionel Esteban

2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Taiyi Zheng ◽  
Xiangui Liu ◽  
Zhengming Yang ◽  
Yutian Luo ◽  
Yapu Zhang ◽  
...  

Abstract Hydrocarbon gas flooding/Huff-n-Puff (HNP) can improve the oil recovery in the unconventional reservoirs. Here, the mechanisms accounting for fluid flow in the low-permeability and ultra-low permeability reservoirs were experimentally and theoretically investigated. Core plugs collected from a typical China oilfield were utilized for the experiments. Additionally, methane was used as the injection agent to conduct natural gas HNP/displacement experiments. The results indicated that the use of natural gas as an energy supplement agent and the HNP development method can effectively improve the recovery efficiency of the aforementioned two types of reservoirs. During the HNP process, the oil recovery is effectively enhanced mainly in the first round and second round. Meanwhile, during gas injection and HNP, natural gas can evidently weaken the extraction and reduce the precipitation of heavy components. However, the natural gas injection can establish an effective driving pressure system in low-permeability core plugs, and the interaction between natural gas and oil can change the mobility ratio. Furthermore, it aids in avoiding viscous fingering and premature breakthroughs. Moreover, the oil can be sandwiched between the interface of the gas and water phases to form a slip channel in a hydrophilic core sample, which can quickly produce oil. Finally, a numerical model was developed by considering the reservoir parameters of Changqing Oilfield, China. The oil recovery after eight rounds of CH4 HNP was 80% higher than that achieved via depletion development. Additionally, the oil recovery curves are especially similar in the previous three HNP rounds. These curves show obvious differences from the fourth round onwards, which indicates that the asphaltene deposition and CH4 diffusion slightly affect the oil recovery factor during the initial production period.


Sign in / Sign up

Export Citation Format

Share Document