scholarly journals The shear resistance of a member without shear reinforcement according to Eurocode 2; the error of the calculated value and the mechanical explanation of the problem

2021 ◽  
Vol 12 (3) ◽  
pp. 222-229
Author(s):  
Béla Bogdándy

AbstractIn this paper the shear resistance of a member without shear reinforcement according to Eurocode 2 is investigated. This expression, as most expressions of design codes typically used to estimate the nominal shear resistance, has been created based on experimental investigations. It will be verified that in case of non-prestressed reinforced concrete member without stirrups, the shear resistance is carried by the shear resistance of the compressive zone; and the shear resistance given by the empirical expression of Eurocode 2 is actually the shear resistance of the compressive zone.Knowing the mechanical background of the empirical expressions of Eurocode 2, the limits of its applicability can be shown, thus its error can be predicted. Using the reports of experimental investigations, it is easy to find cases to prove the correctness of the error-prediction. In this paper simple modifications will be suggested to Eurocode 2 shear design procedures, by which a more consistent level of safety can be ensured.

2020 ◽  
Vol 309 ◽  
pp. 246-251
Author(s):  
Mária Bolešová ◽  
Katarína Gajdošová ◽  
Marek Čuhák

The most used horizontal load-bearing systems in concrete buildings are flat slabs. The effective and economic reconstruction of a locally supported flat slab of an existing building creates a complex task. Shear stress arises near the column and it becomes critical in design with increasing slab slenderness and requires a more detailed calculation. Increasing in the shear resistance of the flat slab can be achieved in various ways. Each method brings different effectiveness, advantages and disadvantages. The most widely used methods of the reconstruction are the increase in the size of the column (therein increasing the control perimeter for displaying the shear stress), the increase in the thickness of the flat slab or reinforcing the slab with shear reinforcement. Bolts and screw anchors (using different mounting angles) can be used as shear reinforcement. Each mentioned reconstruction method should be subjected to numerical calculations and verification of its efficiency. The parametric study presented in this paper is focused on the reconstruction techniques and their verification according to various numerical models. The results from Eurocode 2, fib Model Code 2010 and the new generation of Eurocode 2 are compared to show the differences between them. The aim of this paper is to bring a demonstration of the reconstruction methods that will increase in the shear resistance of the locally supported flat slabs and trying to choose the most effective one.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022108
Author(s):  
Daniel Čereš ◽  
Katarína Gajdošová

Abstract The main reasons for strengthening flat slabs are the change of the use of a building, increase in the value of loads, degradation of the concrete cover layer, or insufficient reinforcement. This paper is focused on the assessment of punching shear capacity of the strengthened flat slabs without shear reinforcement. One of the possibilities how to enhance punching shear capacity is the addition of reinforced concrete topping. The main goal of this paper is to compare the possibilities for calculation of the increase in the punching shear capacity by investigation of the influence of different thicknesses of concrete toppings and different reinforcement ratio. A reference specimen is represented by a fragment of a flat slab with the thickness of h = 200 mm supported by circular column with the diameter of 250 mm. Three different thicknesses (50 mm, 100 mm, 150 mm) of concrete toppings were considered together with three different reinforcement ratios for each thickness of concrete overlay. Theoretical predictions of the punching shear resistance of flat slabs were evaluated by design guidelines according to the relevant standards: Eurocode 2 (EN 1992-1-1), Model Code 2010 and draft of the second generation of Eurocode 2 (prEN 1992-1-1). The differences in the influence of reinforcement ratio are significant. In Model Code 2010 the reinforcement ratio in concrete topping was considered in equation of moment of resistance. This is unlike in both of the mentioned Eurocodes, where the reinforcement ratio was assumed as a geometric average value of the original reinforcement ratio in the slab before strengthening and of the reinforcement ratio of concrete topping. All the predicted theoretical calculations are based on the perfect connection and bond between the original and new layer of concrete. These predictions should be verified by experimental investigation, which is going to be prepared shortly. By the additional increase in the thickness of concrete topping or in the amount of added reinforcement the attention should be payed to the limitation of the punching shear resistance by the value of the maximum punching shear resistance in the compression concrete strut.


2021 ◽  
Vol 54 (5) ◽  
Author(s):  
Jesús Miguel Bairán ◽  
Nikola Tošić ◽  
Albert de la Fuente

AbstractFibre reinforced concrete (FRC) is increasingly used for structural purposes owing to its many benefits, especially in terms of improved overall sustainability of FRC structures relative to traditional reinforced concrete (RC). Such increased structural use of FRC requires safe and reliable models for its design in ultimate limit states (ULS). Particularly important are models for shear strength of FRC members without shear resistance due to the potential of brittle failure. The fib Model Code 2010 contains a model for the shear strength of FRC members without shear reinforcement and the same partial factor accepted for RC structures is accepted for FRC elements. This approach, however, is potentially on the unsafe side since the uncertainties of some design-determining mechanical properties of FRC (i.e., residual flexural strength) are larger than those for RC. Therefore, in this study, a comprehensive reliability-based calibration of the partial factor γc for the shear design of FRC members without shear reinforcement according to the fib Model Code 2010 model is performed. As a first step, the model error δ is assessed on 332 experimental results. Then, a parametric analysis of 700 cases is performed and a relationship between the target failure probability βR and γc is established. The results demonstrate that the current model together with the prescribed value of γc = 1.50 does not comply with the failure probabilities accepted for the different consequences of failure of FRC members over a 50-year service life. Therefore, changes to the shear resistance model are proposed in order to achieve the target failure probabilities.


2009 ◽  
Vol 15 (4) ◽  
pp. 395-403 ◽  
Author(s):  
Bjarne Christian Jensen ◽  
Andrzej Lapko

Modern design of reinforced concrete structural members for shear is based on the theory of plasticity. This paper is written to contribute to the understanding of the inclination of the concrete strut in the inclined strut model for design of shear reinforcement in beams, which among others are used in Eurocode 2. The problem of inclination of the compression strut in truss model is analysed depending on shear reinforcement ratio and effectiveness ratio of concrete strength for compression. Also the understanding of necessary ductility in steel reinforcing bars is discussed in the paper and especially the needs of tests on translation capacity of the shear failure are here analysed. To explain these problems the paper gives a short introduction to the theory of plasticity of reinforced concrete in shear and the background for the equations, which are used in shear design according to Eurocode 2. Santrauka Šiuolaikinis gelžbetonio elementų skersinės armatūros skaičiavimas pagrįstas plastiškumo teorijos principais. Straipsnyje pateikti sijų skersinės armatūros skaičiavimo ypatumai, taikant įstrižojo statramsčio modelį, kuris taikomas ir Eurokode 2. Išnagrinėtas gniuždomojo strypo pavertimas santvaros modelyje, atsižvelgiant į skersinės armatūros ir efektyvaus gniuždomojo betono stiprio santykį. Aptartas armatūrinio plieno strypų stamantrumas, akcentuota sijų laikomosios galios šlyčiai eksperimentinių tyrimų būtinybė. Pateiktas gelžbetoninių sijų šlyties skaičiavimas, taikant plastiškumo teorijos principus. Aptartas Eurokode 2 šlyties skaičiavimams taikomų priklausomybių teorinis pagrindas.


2018 ◽  
Vol 11 (2) ◽  
pp. 432-454
Author(s):  
D. F. A. SANTOS ◽  
A. F. LIMA NETO ◽  
M. P. FERREIRA

Abstract Punching is a possible failure mode for slender footings and it may lead a structure to ruin through progressive collapse. Although footing present different geometric characteristics, their punching shear design is based on the empirical methods used for flat slabs. This paper uses experimental results from 216 tests to evaluate the performance of design code recommendations presented by ACI 318 (2014), ABNT NBR 6118 (2014) and Eurocode 2 (2010) to estimate the punching shear resistance of reinforced concrete footings. Great dispersion between theoretical and experimental results was observed, being evident that the test system affects the punching shear capacity of footings. The more complex method proposed by Eurocode 2 resulted in a better correlation with experimental results.


2019 ◽  
Vol 12 (3) ◽  
pp. 445-478
Author(s):  
M. J. M. PEREIRA FILHO ◽  
M. V. P. FREITAS ◽  
D. F. A. SANTOS ◽  
A. J. C. NASCIMENTO ◽  
M. P. FERREIRA

Abstract Structural accidents due to punching shear failures have been reported in flat slab buildings. Design recommendations presented by codes can lead to entirely different punching shear resistance estimates for similar situations. Furthermore, design codes do not present guidelines for the design of punching shear strengthening of existing slabs. This paper uses a database with 118 experimental results to discuss the performance of theoretical estimates of punching shear resistance using ACI 318, Eurocode 2 and ABNT NBR 6118 in the case of slabs without shear reinforcement. Another database with results of 62 tests on slabs strengthened with post-installed steel and CFRP dowels is used to evaluate the performance of these strengthening techniques and to propose adaptations in codes to allow their use in punching shear strengthening situations of existing slab-column connections.


2016 ◽  
Vol 9 (5) ◽  
pp. 765-795
Author(s):  
O. A. SOUZA JUNIOR ◽  
D. R. C. OLIVEIRA

Abstract Little information on experimental investigations regarding the influence of the prestressing forces in the shear resistance of prestressed beams is found in the technical literature. Thus, it was experimentally evaluated the shear resistance of six post-tensioned prestressed concrete beams with cross section of (150 x 450) mm2, total length of 2400 mm and concrete's compressive resistance of 30 MPa, with the variables of this work being the layout of the prestressing cable, straight or parabolic, and the stirrups geometric rate. Verticals displacement, steel and concrete's strains and a comparison of the experimental loads with the estimates of ACI 318, EUROCODE 2 and NBR 6118: 2014 codes are presented and discussed. The results showed that the cable's parabolic layout increased the beams' shear resistance in up to 16% when compared to beams with straight cables.


2012 ◽  
Vol 5 (5) ◽  
pp. 659-691 ◽  
Author(s):  
P. V. P. Sacramento ◽  
M. P. Ferreira ◽  
D. R. C. Oliveira ◽  
G. S. S. A. Melo

Punching strength is a critical point in the design of flat slabs and due to the lack of a theoretical method capable of explaining this phenomenon, empirical formulations presented by codes of practice are still the most used method to check the bearing capacity of slab-column connections. This paper discusses relevant aspects of the development of flat slabs, the factors that influence the punching resistance of slabs without shear reinforcement and makes comparisons between the experimental results organized in a database with 74 slabs carefully selected with theoretical results using the recommendations of ACI 318, EUROCODE 2 and NBR 6118 and also through the Critical Shear Crack Theory, presented by Muttoni (2008) and incorporated the new fib Model Code (2010).


Sign in / Sign up

Export Citation Format

Share Document