Long-term effect of crop production factors on the yield and yield stability of maize (zea mays L.) in different years

2011 ◽  
Vol 59 (3) ◽  
pp. 191-200 ◽  
Author(s):  
Z. Berzsenyi ◽  
T. Árendás ◽  
P. Bónis ◽  
G. Micskei ◽  
E. Sugár

The effects of five crop production factors (tillage, fertilisation, plant density, variety, weed control) on the yield and yield stability of maize were examined in Martonvásár (HU) in a polyfactorial experiment and in separate long-term experiments on the effects of Nfertilisation, sowing date and plant density. In the polyfactorial experiment the five crop production factors contributed to the increase in maize yield in the following ratios (%): fertilisation 30.6, variety 32.6, plant density 20.2, weed control 14.2, soil cultivation 2.4. In the N fertilisation, sowing date and plant density experiments the effects of the treatments on the maize yield were examined separately for dry and wet years.Averaged over 40 years, the yields in the long-term N fertilisation experiment were 2.422 t ha−1 lower in the dry years than in the wet years (5.170 vs. 7.592 t ha−1). The optimum N rate was 160 kg ha−1. In the sowing date experiment the yield was 2.533 t ha−1 lower in the dry years than in the wet years (6.54 vs. 9.093 t ha−1), averaged over 19 years. In dry years the yield was highest for the early and optimum sowing dates, and in wet years for the optimum sowing date. Sowing at dates other than the optimum caused reductions in N fertiliser efficiency. Averaged over 22 years, the optimum plant density was 80,000 plants ha−1 in wet years and 50,000 plants ha−1 in dry years. The yield was most stable at a plant density of 60,000 plants ha−1. The clarification of year effects is particularly important in relation to the possible effects of climate change.

2018 ◽  
pp. 33-46
Author(s):  
János Nagy ◽  
Adrienn Széles

The effect and interaction of crop production factors on maize yield has been examined for nearly 40 years at the Látókép Experiment Site of the University of Debrecen in a long-term field experiment that is unique and acknowledged in Europe. The research aim is to evaluate the effect of fertilisation, tillage, genotype, sowing, plant density, crop protection and irrigation. The analysis of the database of the examined period makes it possible to evaluate maize yield, as well as the effect of crop production factors and crop year, as well as the interaction between these factors. Based on the different tillage methods, it can be concluded that autumn ploughing provides the highest yield, but its effect significantly differed in irrigated and non-irrigated treatments. The periodical application of strip tillage is justified in areas with favourable soil conditions and free from compated layers (e.g. strip – strip – ploughing – loosening). Under conditions prone to drought, but especially in several consecutive years, a plant density of 70–80 thousand crops per hectare should be used in the case of favourable precipitation supply, but 60 thousand crops per hectare should not be exceeded in dry crop years. The yield increasing effect of fertilisation is significant both under non-irrigated and irrigated conditions, but it is much more moderate in the non-irrigated treatment. Selecting the optimum sowing date is of key importance from the aspect of maize yield, especially in dry crop years. Irrigation is not enough in itself without intensive nutrient management, since it may lead to yield decrease. The results of research, development and innovation, which are based on the performed long-term field experiment, contribute to the production technological methods which provide an opportunity to use sowing seeds, fertilisers and pesticides in a regionally tailored and differentiated way, adapted to the specific needs of the given plot, as well as to plan each operation and to implement precision maize production.


2006 ◽  
Vol 54 (4) ◽  
pp. 413-424 ◽  
Author(s):  
Z. Z. Berzsenyi ◽  
Q. L. Dang

The effect of sowing date, N fertiliser rate, plant density and genotype on the yield stability of maize was analysed using 15-year data from a 5×4×5-factorial sowing date experiment, 35-year data from a two-factorial N fertilisation experiment and 25-year data from a two-factorial plant density experiment. Stability analysis on the experimental treatments was carried out using the variance and regression methods. Among the variance parameters, the ecovalence (W), the stability variance (σ²) and the yield stability (YS) were calculated. Based on the data of the sowing date experiment the optimum sowing date (Apr. 24) or sowing ten days later (May 5) were found to be the most stable due to the low, non-significant values of the variance parameters and the values close to unity for the regression coefficients (b). Although early sowing (Apr. 14) led to a significantly higher yield than late sowing, the yield stability was poorer for early sowing. In the long-term N fertilisation experiment the variance parameters indicated the least yield fluctuation at N rates of 80 and 160 kg ha-1, though the yield stability (YS) parameter for the 240 kg ha-1 N rate was also above-average. Regression analysis showed that the yield level and yield stability were the same in all environments for the 160 and 240 kg ha-1 N rates. The stability of the 80 kg ha-1 N rate was similar, but the yield level was approx. 1.3 t ha-1 lower. The yield stability of the plant density response of the maize hybrids was different in each maturity group (FAO number). The stable plant density range was broadest (50-90 thousand plants ha-1) in the FAO 200-299 group. As the vegetation period lengthened the stable plant density range narrowed and shifted towards lower plant densities (for the FAO 400-499 and FAO 500-599 maturity groups: 50-70 thousand plants ha-1). The variance and regression parameters of stability analysis both contributed to the characterisation of the stability of the genotypes and cropping systems investigated. It can be concluded from the results that high yields and yield stability are not necessarily mutually exclusive.


2008 ◽  
Vol 56 (3) ◽  
pp. 247-264 ◽  
Author(s):  
Z. Berzsenyi ◽  
Q. Dang

The effect of sowing date, N fertilisation and genotype on the grain yield and yield stability of maize was studied between 1991 and 2006 in a long-term N fertilisation experiment set up on chernozem soil in Martonvásár, Hungary. The N treatments (0, 60, 120, 180 and 240 kg ha −1 ) represented the main plot of the three-factor, split-split-plot experiment, with the sowing date (early, optimum, late, very late) in the sub-plots and hybrids from different maturity groups in the sub-sub-plots. The highest yields were obtained for the early and optimum sowing dates (8.712 and 8.706 t ha −1 ). Compared with the optimum sowing date, a delay of ten or twenty days led to yield losses of 5% and 12.5%, respectively. In the late and very late sowings and in years with unfavourable weather conditions, yield increments were only observed up to an N rate of 60 kg ha −1 , while in the early and optimum sowings and in favourable years yield increments were significant up to 120 kg ha −1 N. Yield stability was smallest in the early and very late sowings, in the control and for high N rates, and in the early and late maturity hybrids. It can be concluded that high yields and yield stability are not mutually exclusive.


2011 ◽  
Vol 59 (4) ◽  
pp. 303-315
Author(s):  
Z. Berzsenyi ◽  
T. Árendás ◽  
P. Bónis ◽  
G. Micskei ◽  
E. Sugár

The effect of mineral fertilisation, farmyard manure and their combinations on the yield and yield stability of maize was studied in a long-term maize monoculture experiment set up in Martonvásár, Hungary in 1959. The experiment, laid out as a Latin square, included two fertilisation levels [35 t ha−1 or 70 t ha−1 farmyard manure (FYM) every four years] and seven treatments. The yield results were evaluated using analysis of variance, cumulative yield analysis and stability analysis. The year effect was analysed by dividing the 51 years (1959–2009) into wet (32) and dry (19) years. The rainfall sum for the months Apr.–Sep. averaged 361 mm in the wet years and 232 mm in the dry years.Among the fertiliser treatments the FYM + mineral fertiliser combination and NPK mineral fertilisation alone gave the highest yields. In more than 50% of the years the higher fertiliser level had no significant yield-increasing effect. The yield differences between the two fertiliser levels were twice as high in wet years as in dry years (0.543 vs. 0.274). Averaged over all seven treatments, the maize yield was 3.959 t ha−1 in dry years and 6.250 t ha−1 in wet years, giving a yield increment of 2.291 t ha−1 in favourable years. Yield stability was greatest when the NPK content of 35 t ha−1 FYM was replaced in part (17.5 t ha−1 FYM + N1/2P1/2K1/2) or in full (N1P1K1) by mineral fertiliser, or when 70 t ha−1 FYM was applied. Yield stability is an important indicator of the sustainability of crop production.


2014 ◽  
Vol 63 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Éva Lehoczky ◽  
M. Kamuti ◽  
N. Mazsu ◽  
J. Tamás ◽  
D. Sáringer-Kenyeres ◽  
...  

Plant nutrition is one of the most important intensification factors of crop production. The utilization of nutrients, however, may be modified by a number of production factors, including weed presence. Thus, the knowledge of occurring weed species, their abundance, nutrient and water uptake is extremely important to establish an appropriate basis for the evaluation of their risks or negative effects on crops. That is why investigations were carried out in a long-term fertilization experiment on the influence of different nutrient supplies (Ø, PK, NK, NPK) on weed flora in maize field.The weed surveys recorded similar diversity on the experimental area: the species of A. artemisiifolia, S. halepense and D. stramonium were dominant, but C. album and C. hybridum were also common. These species and H. annuus were the most abundant weeds.Based on the totalized and average data of all treatments, density followed the same tendency in the experimental years. It was the highest in the PK treated and untreated plots, and significantly exceeded the values of NK fertilized areas. Presumably the better N availability promoted the development of nitrophilic weeds, while the mortality of other small species increased.Winter wheat and maize forecrops had no visible influence on the diversity and the intensity of weediness. On the contrary, there were consistent differences in the density of certain weed species in accordance to the applied nutrients. A. artemisiifolia was present in the largest number in the untreated control and PK fertilized plots. The density of S. halepense and H. annuus was also significantly higher in the control areas. The number of their individuals was smaller in those plots where N containing fertilizers were used. Contrary to them, the density of D. stramonium, C. album and C. hybridum was the highest in the NPK treatments.


2016 ◽  
Vol 155 (5) ◽  
pp. 703-724 ◽  
Author(s):  
A. MULUNEH ◽  
L. STROOSNIJDER ◽  
S. KEESSTRA ◽  
B. BIAZIN

SUMMARYStudies on climate impacts and related adaptation strategies are becoming increasingly important to counteract the negative impacts of climate change. In Ethiopia, climate change is likely to affect crop yields negatively and therefore food security. However, quantitative evidence is lacking about the ability of farm-level adaptation options to offset the negative impacts of climate change and to improve food security. The MarkSim Global Climate Model weather generator was used to generate projected daily rainfall and temperature data originally taken from the ECHAM5 general circulation model and ensemble mean of six models under high (A2) and low (B1) emission scenarios. The FAO AquaCrop model was validated and subsequently used to predict maize yields and explore three adaptation options: supplemental irrigation (SI), increasing plant density and changing sowing date. The maximum level of maize yield was obtained when the second level of supplemental irrigation (SI2), which is the application of irrigation water when the soil water depletion reached 75% of the total available water in the root zone, is combined with 30 000 plants/ha plant density. It was also found that SI has a marginal effect in good rainfall years but using 94–111 mm of SI can avoid total crop failure in drought years. Hence, SI is a promising option to bridge dry spells and improve food security in the Rift Valley dry lands of Ethiopia. Expected longer dry spells during the shorter rainy season (Belg) in the future are likely to further reduce maize yield. This predicted lower maize production is only partly compensated by the expected increase in CO2 concentration. However, shifting the sowing period of maize from the current Belg season (mostly April or May) to the first month of the longer rainy season (Kiremt) (June) can offset the predicted yield reduction. In general, the present study showed that climate change will occur and, without adaptation, will have negative effects. Use of SI and shifting sowing dates are viable options for adapting to the changes, stabilizing or increasing yield and therefore improving food security for the future.


2012 ◽  
pp. 89-93
Author(s):  
Tamás Árendás ◽  
Zoltán Berzsenyi ◽  
Péter Bónis

The effect of crop production factors on the grain yield was analysed on the basis of three-factorial experiments laid out in a split-split-plot design. In the case of maize the studies were made as part of a long-term experiment set up in 1980 on chernozem soil with forest residues, well supplied with N and very well with PK. The effects of five N levels in the main plots and four sowing dates in the subplots were compared in terms of the performance of four medium early hybrids (FAO 200). In the technological adaptation experiments carried out with durum wheat, the N supplies were moderate (2010) or good (2011), while the P and K supplies were good or very good in both years. Six N top-dressing treatments were applied in the main plots and five plant protection treatments in the subplots to test the responses of three varieties. The results were evaluated using analysis of variance, while correlations between the variables were detected using regression analysis.The effect of the tested factors on the grain yield was significant in the three-factorial maize experiment despite the annual fluctuations, reflected in extremely variable environmental means. During the given period the effect of N fertilisation surpassed that of the sowing date and the genotype. Regression analysis on the N responses for various sowing dates showed that maize sown in the middle 10 days of April gave the highest yield, but the N rates required to achieve maximum values declined as sowing was delayed. In the very wet year, the yield of durum wheat was influenced to the greatest extent by the plant protection treatments, while N supplies and the choice of variety were of approximately the same importance.  In the favourable year the yielding ability was determined by topdressing and the importance of plant protection dropped to half,  while no  significant difference could be detected between the tested varieties. According to the results of regression analysis, the positive effect of plant protection could not be substituted by an increase in the N rate in either year. The achievement of higher yields was only possible by a joint intensification of plant protection and N fertilisation. Nevertheless, the use of more efficient chemicals led to a slightly, though not significantly, higher yield, with a lower N requirement. 


2005 ◽  
Vol 53 (1) ◽  
pp. 59-70 ◽  
Author(s):  
M. Sárvári

In order to enhance the adaptability and yield stability of maize, the effect of nutrient supply and plant density on yield was studied on a calcareous chernozem soil in Debrecen, while the relationship between sowing date and the grain moisture content at harvest was investigated on a typical meadow soil in Hajdúböszörmény. In the plant density experiment, the plant densities applied were 45, 60, 75 and 90 thousand plants/ha. The optimal fertilizer rates for the maize hybrids were: N 40-120, P2O5 25-75, K2O 30-90 kg ha-1. The application of NPK fertilizers in a wet year increased the yield by 40-50%. Hybrids with good chilling resistance at germination can be sown as early as 10 April, when the soil temperature reaches 8-10°C. There was a significant correlation between sowing date and the grain moisture content at harvest. When hybrids with good chilling resistance at germination were sown early, the grain moisture content at harvest was reduced by 5-10%. A plant density higher than the optimum reduces yield and yield stability. The optimal plant densities determined in the experiment were 60, 75 and 90 thousand plants/ha for two, three and one hybrid, respectively.


Sign in / Sign up

Export Citation Format

Share Document