A survey on the soil penetration resistance and soil moisture content in field experiments

2011 ◽  
Vol 59 (4) ◽  
pp. 349-359
Author(s):  
P. Földesi ◽  
C. Gyuricza

Various forms of physical soil degradation, including soil compaction, have been widely investigated both in Hungary and abroad. Soil compaction is a world-scale problem, which may be triggered by both natural and artificial factors and may adversely influence the effectiveness of crop production. In the long run this unfavourable change in the physical condition of the soil may result in extra expenses, higher energy consumption and excessive environmental damage. The effect of conventional tillage on the physical condition of the soil was assessed on six farms for three years in the framework of field experiments. In this study the physical condition of the soil was examined in terms of soil penetration resistance and moisture content. Significant differences between the experiments were revealed when penetration resistance (PR) was examinated at a depth of 20–30 cm, but not at other depths. In 2004 the mean PR values exceeded 3 MPa in experiments A, B and E. In 2005 significant differences were observed between the experiments at a depth of 30–40 cm, but no adverse compaction was detected at any depth in any of the experiments. In 2006 significant differences were observed between the experiments at depths of 0–10 cm and 10–20 cm, though even in that year no adverse soil compaction was detected. In the first year significant differences in soil moisture content were revealed at depths of 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm, and in 2005 at depths of 20–30 cm and 30–40 cm. In 2006 no significant differences were found between the experiments at any depth. The highest soil moisture contents were recorded in all the experiments at a depth of 30–40 cm. All in all, the results of both penetration resistance and moisture content were indicative of favourable soil conditions. During the period investigated adversely compact layers that would hamper moisture transport were not found in any of the experiments.

1973 ◽  
Vol 81 (2) ◽  
pp. 245-252 ◽  
Author(s):  
D. A. Perry

SummaryThe percentage emergence from monogerm sugar-beet seed in field experiments was reduced by high soil moisture content and soil compaction, but was unaffected by soil temperature. Seed lots were differentially influenced when the soil conditions were very adverse. Pelleted seed emerged a little better in good soil conditions and was not more sensitive to high soil moisture content than raw seed.The relation between laboratory germination and the number of emerged seedlings was variable and followed no obvious trends, and there was no consistent rank order in the emergence ability of four commercial cultivars.


Agriculture ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 148 ◽  
Author(s):  
Michael O’Flynn ◽  
John Finnan ◽  
Edna Curley ◽  
Kevin McDonnell

Harvesting Miscanthus × giganteus (J.M. Greef & Deuter ex Hodkinson & Renvoize) after shoot emergence is known to reduce yields in subsequent seasons. This research was conducted in Miscanthus to assess the effects on crop response and soil compaction of annually repeated traffic, applied both before new growth in the rhizomes (early harvest) and after shoot emergence (late harvest), at two different soil moisture contents. While an annual early harvest, yields more than a late harvest, because damage to new shoots is avoided, soil compaction may be increased following repeated harvests. Five treatments were tested: (a) An untrafficked control, (b) early-traffic on soil with typical soil moisture content (SMC) (early-normal), (c) early-traffic on soil with elevated SMC (early-elevated), (d) late-traffic on soil with typical SMC (late-normal) and (e) late-traffic on soil with elevated SMC (late-wet). The experiment was conducted on a Gleysol in Co. Dublin, Ireland during 2010 and 2011. Crop response effects were assessed by measuring stem numbers, stem height, trafficked zone biomass yield (November) and overall stem yield (January). Compaction effects were assessed by measuring penetration resistance, bulk density and water infiltration rate. Trafficked zone biomass yield in the early-dry and early-wet treatments was, respectively, 18% and 23% lower than in the control, but was, respectively, 39% and 31% higher than in the late-dry treatment. Overall, stem yield was significantly lower in the late-normal and late-wet treatments (10.4 and 10.1 tdm ha−1 respectively) when compared with the control (12.4 tdm ha−1), but no significant difference was recorded in overall stem yield between both early-traffic treatments and the control. Penetration resistance values were significantly higher in all trafficked treatments when compared with the control at depths of 0.15 m (≥54–61%) and 0.30 m (≥27–57%) and were significantly higher in 2011 when compared with 2010 at depths of 0.15 and 0.30 m. Baler system traffic in Miscanthus significantly reduced yields and significantly increased compaction annually. Miscanthus harvested early, on a dry soil, yielded 1.1 tdm ha−1 more than when harvested late on a dry soil. The yield advantage increased to 1.3 tdm ha−1 when early harvesting on a soil with 40–43% moisture content was compared with late harvesting on a wetter soil (51–52% moisture content). In this study, the magnitude of yield losses from compaction or other causes in early harvests was substantially lower than the yield losses, which resulted from shoot damage in late harvests. It is likely in similar climates that the results of this study would also apply to other perennial crops growing in similar soil types.


2018 ◽  
Vol 31 (1) ◽  
pp. 48-58
Author(s):  
Aqeel J. Nassir

An experiment was conducted in fields of Agriculture college, University  of Basrah. The experiment was designed with split-spilt plots in Complete Randomized Blocks Design Treatments included three types of moldboard plows: helical,  semi digger and general –purpose, three soil moisture content levels (10.23,16.47 and 24.68%), and four tractor speed of 0.41, 0.56, 0.86 and 1.21 m sec -1  . The soil  physical properties were determined after plowing soil by using three types of moldboard plow. The results showed that there was significant effect of moldboard plow types, soil moisture content and tractor speed on soil physical properties including bulk density, soil porosity, soil penetration resistance and pulverization ratio. Results also indicated that the effect of interaction among plow types, soil moisture content and tractor speed was significantly on soil penetration resistance and pulverization ratios while it had not significantly effect on bulk density, soil porosity. In general, soil physical properties, had been improved when using high tractor speed and moderate soil moisture content whereas optimal operation was obtained when using general-purpose plow type and  high tractor speed of 1.12 m sec -1 and soil moisture content of 16.47% where this combination gives low bulk density (0.96Mg m-3), high soil porosity (63.90%) high soil pulverization ratio (74%) and low soil penetration resistance (623.47 kN m-2).


2013 ◽  
pp. 183-186
Author(s):  
Géza Tuba

he effect of reduced and conventional tillage systems on soil compaction and moisture content in two years with extreme weather conditions is introduced in this paper. The investigations were carried out in a long-term soil cultivation experiment set on a heavy textured meadow chernozem soil at the Karcag Research Institute. In 2010 the amount of precipitation during the vegetation period of winter wheat was 623.3 mm, 2.2 times higher than the 50-year average, while in 2011 this value was 188.7 mm giving only 65% of the average. The examinations were made after harvest on stubbles on 4 test plots in 5 replications in the case of each tillage system. Soil compaction was characterised by penetration resistance values, while the actual soil moisture contents were determined by gravimetry. The values of penetration resistance and soil moisture content of the cultivated soil layer were better in the case of reduced tillage under extreme precipitation conditions. It could be established that regular application of deep soil loosening is essential due to the formation of the unfavourable compact soil layer under 30 cm. Conventional tillage resulted in enhanced compaction under the depth of ploughing, the penetration resistance can reach the value of 4 MPa under wet, while even 8 MPa under dry soil status.


Author(s):  
Y. A. Unguwanrimi ◽  
A. M. Sada ◽  
G. N. Ugama ◽  
H. S. Garuba ◽  
A. Ugoani

Draft requirements of two animal – drawn (IAR) weeders operating on loam soil were determined in the study. The implements include a straddle row weeder and an emcot attached rotary weeder evaluated under the same soil conditions, using a pair of white Fulani breed of oxen. The animal draft requirement was first estimated from the animal ergonomics measurements. Using area of 0.054 hectare as experimental plot for each implement the draft requirement of each implement was investigated after taking soil samples for soil moisture content and bulk density determinations. The implements tested showed variation in their average draft requirement. The straddle row weeder had the highest value of 338.15 N respectively while the emcot attached rotary weeder had the lowest value of 188.12 N with 47.03%, respectively. The average soil moisture contents and bulk density were 13.0% and 1.46%/cm3, respectively.


2020 ◽  
Vol 13 ◽  
pp. 117862212094806 ◽  
Author(s):  
MJ Marques ◽  
M Ruiz-Colmenero ◽  
R Bienes ◽  
A García-Díaz ◽  
B Sastre

The study of alternative soil managements to tillage, based on the evidence of climate change in the Mediterranean basin, is of great importance. Summer and autumn are critical seasons for soil degradation due to the high-intensity, short-duration storms. Vineyards are vulnerable, especially on steep slopes. The particular effects of storms over the years under different soil conditions due to different management practices are not frequently addressed in the literature. The aim of this study was to examine the differences between runoff and soil moisture patterns influenced by 2 treatments: traditional tillage (Till) and a permanent cover crop. A shallow-rooted grass species Brachypodium distachyon (L.) P. Beauv. with considerable density coverage was selected as cover crop. This annual species was seeded once in the first year and then allowed to self-seed the following years. Tillage was performed at least twice in spring to a 10- to 15-cm depth and once in late autumn at a depth of 20 to 35 cm. Rainfall simulation experiments were performed, 1 year after treatments, using high-intensity rainfall on closed plots of 2 m2, located in the middle strips of the vineyard with different treatments. The effects of simulated rainfall experiments were determined in 3 different moments of the growth cycle of cultivar: (1) in summer with dry soils, (2) in early autumn with moderate soil moisture, and (3) in autumn with wet soils. During the 2-year trial, the soil moisture level in the soil upper layer (0-10 cm) was higher for Till treatment (14.1% ± 2.4%) compared with that for cover crop treatment (12.3% ± 2.0%). However, soil moisture values were more similar between treatments at 35 cm depth (12% ± 1%), with the exception of spring and autumn; in spring, water consumption in the cover crop treatment was the highest, and the moisture level at 35 cm depth was reduced (12%) compared with that for Till treatment (13%). In autumn, in cover crop treatment, higher water infiltration rate in soils led to higher soil moisture content at 35 cm (11%) compared with that of Till treatment (10%). The effects of simulated rainfall experiments on runoff and infiltration under different soil conditions and management practices vary seasonally. Runoff was significantly higher in summer for cover crop treatment (11%) as compared with that for Till management (1%), but significantly lower (3%) with wetter soils than for Till treatment (22%) in autumn. Thus, the simulation experiments with wet soils using cover crops produced higher infiltration rates and, consequently, the higher soil moisture content in the following days. The difference between seasons is attributed to the greater porosity of soil under Till treatment in summer, which resulted from the shallow plowing (10-15 cm depth), carried out to reduce moisture competition between weeds. The effect of traditional spring plowing was short-lived. The infiltration of water increased by cover crop treatment as compared with tillage in autumn both before and after ripping. Management practices did not influence wine parameters, as no significant differences were found between wine organoleptic characteristics in the duo-trio wine tastings, similarly, no differences were found for alcoholic degree, acidity, reduced sugars, and pH; however, a trend for a positive increase in polyphenol contents was noticed. Therefore, properly managed to avoid water shortages, cover crops can be recommended for soil protection in semi-arid environments.


2019 ◽  
Vol 1 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Mohamed ◽  
Liu

Efficient transplanting has been identified as one of the essential steps towards achieving an increased yield in the farm. However, many factors are affecting these processes such as soil moisture content and the speed of pickup. This study was carried out to investigate the effect of different soil moisture content and pickup speeds on pickup force, balance, resistance, and lump damage during transplanting of seedlings. The results showed that penetration resistance was inversely proportional to the speed and soil moisture content. The highest penetration resistance (38 N) values were recorded under the lowest speed (0.5 mm/s) at the low moisture content; whereas, the lowest penetration resistance was obtained at highest speed (10 mm/s) under high moisture content. The highest pick-up force resistance values were recorded under the lowest speed (0.5 mm/s) at low moisture content than the lowest pick-up force resistance of 1.4 N at (10 mm/s) under the high moisture content. On the other hand, an increase of pick-up force led to a decrease in the pick-up force resistance. The pick-up damage and the pick-up speed are directly proportional—nevertheless, the former increased with a decreasing soil moisture content. The highest pick-up damage values (82%) were observed under the top-most speed (10 mm/s) at high moisture content. It can be concluded that for successful auto-transplanting of seedling the soil condition, the force applied and speed should be taken into consideration. This work will implement an effective seedling-picking performance and basis for the optimal design of end-effectors.


2000 ◽  
Vol 40 (6) ◽  
pp. 843 ◽  
Author(s):  
J. S. Day

Poor and uneven emergence of seedlings decreases the efficiency of sesame (Sesamum indicum) seed production. In a glasshouse study, seedling emergence was reduced by low soil moisture content (less than 20%, w/v) and by waterlogging (common in soils with small soil particles). Watering events that failed to raise soil moisture content above 20% caused most seeds to germinate (more than than 80%), but only some of these seeds emerged from the soil (less than 50%). Gibberellic acid pre-treatment of seeds (50 or 1000 mg/L) failed to improve emergence of seeds from soils with an initial soil moisture content less than 20%. This result supports previous reports suggesting that gibberellic acid treatment does not influence seedling emergence, and may only be useful to overcome seed dormancy in those sesame varieties where dormancy is a problem. For maximum emergence it is recommended that sesame seeds be sown in non-waterlogged soils and that soil moisture content be maintained above 20% for a number of days after sowing.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1357-1362 ◽  
Author(s):  
Robert D. Jefferson ◽  
Don W. Steeples ◽  
Ross A. Black ◽  
Tim Carr

Repeated shallow‐seismic experiments were conducted at a site on days with different near‐surface moisture conditions in unconsolidated material. Experimental field parameters remained constant to ensure comparability of results. Variations in the seismic data are attributed to the changes in soil‐moisture content of the unconsolidated material. Higher amplitudes of reflections and refractions were obtained under wetter near‐surface conditions. An increase in amplitude of 21 dB in the 100–300 Hz frequency range was observed when the moisture content increased from 18% to 36% in the upper 0.15 m (0.5 ft) of the subsurface. In the time‐domain records, highly saturated soil conditions caused large‐amplitude ringy wavelets that interfered with and degraded the appearance of some of the reflection information in the raw field data. This may indicate that an intermediate near‐surface moisture content is most conducive to the recording of high‐quality shallow‐seismic reflection data at this site. This study illustrates the drastic changes that can occur in shallow‐seismic data due to variations in near‐surface moisture conditions. These conditions may need to be considered to optimize the acquisition timing and parameters prior to collection of data.


Sign in / Sign up

Export Citation Format

Share Document