Investigation of the Influence of Deep-Level Defects on the Conversion Efficiency of Si-based Solar Cells

MRS Advances ◽  
2016 ◽  
Vol 1 (14) ◽  
pp. 911-916 ◽  
Author(s):  
Vladimir G. Litvinov ◽  
Nikolay V. Vishnyakov ◽  
Valery V. Gudzev ◽  
Nikolay B. Rybin ◽  
Dmitry S. Kusakin ◽  
...  

ABSTRACTThe influence of deep level defects (DLs) on the conversion efficiency of multicrystalline Si-based standard solar cells (SCs) is investigated. Multicrystalline p-type Si wafers with 156×156 mm dimensions and 200 μm thickness were used for SCs preparation. Three types of SCs with conversion efficiency 10%, 16.8% and 20.4% were studied using capacitance voltage characteristics method (C-V) and by current deep level transient spectroscopy (I-DLTS). The correlation between the total concentration of DLs and the values of the SCs conversion efficiency is found.

MRS Advances ◽  
2017 ◽  
Vol 2 (53) ◽  
pp. 3141-3146 ◽  
Author(s):  
Vladimir G. Litvinov ◽  
Alexander V. Ermachikhin ◽  
Dmitry S. Kusakin ◽  
Nikolay V. Vishnyakov ◽  
Valery V. Gudzev ◽  
...  

ABSTRACTThe influence of deep level defects lateral distribution in active layers of multicrystalline Si-based standard solar cells is investigated. Multicrystalline p-type Si wafers with 156×156 mm dimensions and 200 μm thickness were used for SCs preparation. One type of solar cells with conversion efficiency 20.4% was studied using capacitance voltage characteristics method (C-V) and by current deep level transient spectroscopy (I-DLTS). From various places along the diagonal of solar cell’s substrate with 20.4% efficiency nine pieces with an area ∼20 mm2 were extracted and studied. I-DLTS spectra of the five pieces from solar cell were measured. The features of deep levels defects concentration lateral distribution along the SC’s surface were studied.


1987 ◽  
Vol 65 (8) ◽  
pp. 966-971 ◽  
Author(s):  
N. Christoforou ◽  
J. D. Leslie ◽  
S. Damaskinos

CdS–CuInSe2 solar cells, which have an efficiency of 9%, have been studied by current–voltage, capacitance–voltage, and capacitance-transient measurements over the temperature range 90–380 K. Deep-level transient spectroscopy analysis of the capacitance transient measurements reveals one majority carrier trap with an activation energy of 0.70 ± 0.02 eV. Although the present experiment cannot establish definitely if the trap is in the CdS or CuInSe2 layer, arguments are presented that it is a hole trap in the p-type CuInSe2 layer. Current–voltage measurements indicate a reversible increase in the reverse-bias leakage current with increasing temperature above 300 K. Evidence is presented that suggests that the rectifying barrier height in the CdS–CuInSe2 solar cell decreases rapidly with temperature above 300 K. Capacitance versus voltage measurements suggest that the depiction layer being studied is primarily in the CuInSe2, but the temperature dependence of the ionized charge concentration N(x) cannot be totally explained although one possible cause is suggested.


2003 ◽  
Vol 763 ◽  
Author(s):  
Jehad A. AbuShama ◽  
S. Johnston ◽  
R. Ahrenkiel ◽  
R. Crandall ◽  
D. Young ◽  
...  

AbstractWe investigated the electronic properties of ZnO/CdS/CIGS/Mo/SLG polycrystalline thin-film solar cells with compositions ranging from Cu-rich to In(Ga)-rich by deep-level transient spectroscopy (DLTS) and capacitance-voltage (C-V) measurements. This compositional change represents the evolution of the film during growth by the 3-stage process. Two sets (four samples each) of CIGS thin films were prepared with Ga/(In+Ga) ratios of ∼0.3 (low Ga) and ∼0.6 (high Ga). The Cu/(In+Ga) ratio ranges from 1.24 (Cu-rich) to 0.88 (In(Ga)-rich). The films were treated with NaCN to remove the Cu2-xSe phase where needed. Key results include: (1) For lowGa devices, DLTS data show that acceptor-like traps dominate in samples where CIGS grains do not go through the Cu-rich to In(Ga)-rich transition, whereas donor-like traps dominate in In(Ga)-rich samples. Therefore, we see a clear transformation of defects from acceptor-like to donor-like traps. The activation energies of these traps range from 0.12 to 0.63 eV. We also observed that NaCN treatment eliminates a deep minority trap in the In(Ga)-rich devices, (2) For high-Ga devices, only majority-carrier traps were detected. These traps again range from shallow to deep, (3) The carrier concentration around the junction and the density of traps decrease as the CIGS becomes more In(Ga)-rich.


1995 ◽  
Vol 378 ◽  
Author(s):  
Kevin L. Beaman ◽  
Aditya Agarwal ◽  
Sergei V. Koveshnikov ◽  
George A. Rozgonyi

AbstractThe lateral motion of iron impurities was observed and studied in ptype iron contaminated silicon. The lateral diffusion was induced by and then measured using Schottky diodes with a special interdigitated fingers design. Capture of the impurities was done by diffusing to laterally placed dislocation loops formed by a self aligned ion implantation. Lateral changes in Fe concentration were determined using capacitance-voltage and deep level transient spectroscopy.


Author(s):  
М.М. Соболев ◽  
Ф.Ю. Солдатенков

The results of experimental studies of capacitance– voltage characteristics, spectra of deep-level transient spectroscopy of graded high-voltage GaAs p+−p0−i−n0 diodes fabricated by liquid-phase epitaxy at a crystallization temperature of 900C from one solution–melt due to autodoping with background impurities, in a hydrogen or argon ambient, before and after irradiation with neutrons. After neutron irradiation, deep-level transient spectroscopy spectra revealed wide zones of defect clusters with acceptor-like negatively charged traps in the n0-layer, which arise as a result of electron emission from states located above the middle of the band gap. It was found that the differences in capacitance–voltage characteristics of the structures grown in hydrogen or argon ambient after irradiation are due to different doses of irradiation of GaAs p+−p0−i−n0 structures and different degrees of compensation of shallow donor impurities by deep traps in the layers.


2011 ◽  
Vol 109 (6) ◽  
pp. 064514 ◽  
Author(s):  
A. F. Basile ◽  
J. Rozen ◽  
J. R. Williams ◽  
L. C. Feldman ◽  
P. M. Mooney

Sign in / Sign up

Export Citation Format

Share Document