3D printing of gels with living photosynthetic algae

MRS Advances ◽  
2016 ◽  
Vol 1 (36) ◽  
pp. 2569-2572 ◽  
Author(s):  
Paul Calvert

ABSTRACTChlorella is a green, photosynthetic single-celled genus of algae. It can be 3D printed as a suspension in sodium alginate and gelled with calcium solutions. We have made “log pile” structures with channels between the gel lines to allow easy transport of nutrients and products. Under white light and immersed in solutions of bicarbonate and phosphate and urea “plant food” the algae multiply with the gel and produce oxygen at a rate comparable to that reported for suspensions of Chlorella. The system is stable for one or two weeks at least. In principle this can be extended to other plant tissues but there are concerns relating to bacterial and fungal infection and toxicity of the gel components. In addition a tougher gel is needed if this was to be converted to a practical bioreactor system.

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 224
Author(s):  
Xiaojun Chen ◽  
Deyun Mo ◽  
Manfeng Gong

Integrated microfluidic systems afford extensive benefits for chemical and biological fields, yet traditional, monolithic methods of microfabrication restrict the design and assembly of truly complex systems. Here, a simple, reconfigurable and high fluid pressure modular microfluidic system is presented. The screw interconnects reversibly assemble each individual microfluidic module together. Screw connector provided leak-free fluidic communication, which could withstand fluid resistances up to 500 kPa between two interconnected microfluidic modules. A sample library of standardized components and connectors manufactured using 3D printing was developed. The capability for modular microfluidic system was demonstrated by generating sodium alginate gel microspheres. This 3D printed modular microfluidic system makes it possible to meet the needs of the end-user, and can be applied to bioassays, material synthesis, and other applications.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 92
Author(s):  
Natalia Menshutina ◽  
Andrey Abramov ◽  
Pavel Tsygankov ◽  
Daria Lovskaya

Three-dimensional (3D) printing is a promising technology for solving a wide range of problems: regenerative medicine, tissue engineering, chemistry, etc. One of the potential applications of additive technologies is the production of highly porous structures with complex geometries, while printing is carried out using gel-like materials. However, the implementation of precise gel printing is a difficult task due to the high requirements for “ink”. In this paper, we propose the use of gel-like materials based on sodium alginate as “ink” for the implementation of the developed technology of extrusion-based 3D printing. Rheological studies were carried out for the developed alginate ink compositions. The optimal rheological properties are gel-like materials based on 2 wt% sodium alginate and 0.2 wt% calcium chloride. The 3D-printed structures with complex geometry were successfully dried using supercritical drying. The resulting aerogels have a high specific surface area (from 350 to 422 m2/g) and a high pore volume (from 3 to 3.78 cm3/g).


RSC Advances ◽  
2017 ◽  
Vol 7 (20) ◽  
pp. 11880-11889 ◽  
Author(s):  
Guilin Luo ◽  
Yufei Ma ◽  
Xu Cui ◽  
Lixin Jiang ◽  
Mingming Wu ◽  
...  

Composite scaffolds of type 13-93 bioactive glass (13-93 BG) and sodium alginate (SA), denoted 13-93 BG/SA, in mass ratios of 0 : 4, 1 : 4, 2 : 4 and 4 : 4 were prepared for bone regeneration by 3D printing under mild conditions.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


Author(s):  
Juan Sebastian Cuellar ◽  
Dick Plettenburg ◽  
Amir A Zadpoor ◽  
Paul Breedveld ◽  
Gerwin Smit

Various upper-limb prostheses have been designed for 3D printing but only a few of them are based on bio-inspired design principles and many anatomical details are not typically incorporated even though 3D printing offers advantages that facilitate the application of such design principles. We therefore aimed to apply a bio-inspired approach to the design and fabrication of articulated fingers for a new type of 3D printed hand prosthesis that is body-powered and complies with basic user requirements. We first studied the biological structure of human fingers and their movement control mechanisms in order to devise the transmission and actuation system. A number of working principles were established and various simplifications were made to fabricate the hand prosthesis using a fused deposition modelling (FDM) 3D printer with dual material extrusion. We then evaluated the mechanical performance of the prosthetic device by measuring its ability to exert pinch forces and the energy dissipated during each operational cycle. We fabricated our prototypes using three polymeric materials including PLA, TPU, and Nylon. The total weight of the prosthesis was 92 g with a total material cost of 12 US dollars. The energy dissipated during each cycle was 0.380 Nm with a pinch force of ≈16 N corresponding to an input force of 100 N. The hand is actuated by a conventional pulling cable used in BP prostheses. It is connected to a shoulder strap at one end and to the coupling of the whiffle tree mechanism at the other end. The whiffle tree mechanism distributes the force to the four tendons, which bend all fingers simultaneously when pulled. The design described in this manuscript demonstrates several bio-inspired design features and is capable of performing different grasping patterns due to the adaptive grasping provided by the articulated fingers. The pinch force obtained is superior to other fully 3D printed body-powered hand prostheses, but still below that of conventional body powered hand prostheses. We present a 3D printed bio-inspired prosthetic hand that is body-powered and includes all of the following characteristics: adaptive grasping, articulated fingers, and minimized post-printing assembly. Additionally, the low cost and low weight make this prosthetic hand a worthy option mainly in locations where state-of-the-art prosthetic workshops are absent.


2019 ◽  
Vol 24 (2) ◽  
pp. 254-270 ◽  
Author(s):  
Luke Heemsbergen ◽  
Angela Daly ◽  
Jiajie Lu ◽  
Thomas Birtchnell

This article outlines preliminary findings from a futures forecasting exercise where participants in Shenzhen and Singapore considered the socio-technological construction of 3D printing in terms of work and social change. We offered participants ideal political-economic futures across local–global knowledge and capital–commons dimensions, and then had them backcast the contextual waypoints across markets, culture, policy, law and technology dimensions that help guide towards each future. Their discussion identified various contextually sensitive points, but also tended to dismiss the farthest reaches of each proposed ideal, often reverting to familiar contextual signifiers. Here, we offer discussion on how participants saw culture and industry shaping futures for pertinent political economic concerns in the twenty-first century.


Sign in / Sign up

Export Citation Format

Share Document