Layered Sodium Manganese Oxide Na2Mn3O7 as an Insertion Host for Aqueous Zinc-ion Batteries

MRS Advances ◽  
2019 ◽  
Vol 4 (49) ◽  
pp. 2651-2657 ◽  
Author(s):  
Krishnakanth Sada ◽  
Prabeer Barpanda

ABSTRACTAqueous rechargeable batteries are attractive owing to their higher operational safety, high ionic conductivity, scalable and easy manufacturing. These aqueous batteries form an economic option for large-scale (grid) power storage. In the aqueous battery sector, Mn-based compounds are highly attractive with their non-toxic nature, low-cost, rich mineral chemistry and robust operational safety. Several Mn-based systems like LiMn2O4 spinel and LiNi1/3Mn1/3Co1/3O2 have seen successful commercialization. Pursuing Mn-based materials, we have shown layer structured Na2Mn3O7 as a versatile cathode material for non-aqueous systems like Li-, Na- and K-ion batteries. In the current work, we have exploited Na2Mn3O7 as a cathode material for aqueous Zn-ion battery for the first time. This Na-Mn-O ternary system was prepared using two-step emulsion-based synthesis. The phase-pure Na2Mn3O7 was formed in a triclinic structure with a space group of P-1. It exhibited versatile electrochemical insertion of different ions like Li-, Na- and K-ions involving phase transition. Na2Mn3O7 exhibited reversible Zn-ion intercalation delivering capacity of 245 mA h g-1 with a nominal voltage of 1.5 V. Upon discharge, it triggered phase transformation to an unknown phase. Layered Na2Mn3O7 oxide was found to act as an efficient cathode for Zn-ion batteries with good cycling stability.

2015 ◽  
Vol 17 (6) ◽  
pp. 4551-4557 ◽  
Author(s):  
Wei Wang ◽  
Shubo Wang ◽  
Handong Jiao ◽  
Pan Zhan ◽  
Shuqiang Jiao

Due to their low cost, high abundance and eco-friendly features, Na-ion batteries are becoming alternative choices for rechargeable batteries, especially in large scale applications.


2020 ◽  
Vol 49 (3) ◽  
pp. 711-718 ◽  
Author(s):  
Lei Gou ◽  
Ke-Liang Mou ◽  
Xiao-Yong Fan ◽  
Ming-Juan Zhao ◽  
Yue Wang ◽  
...  

Rechargeable aqueous zinc-ion batteries (ZIBs) are considered to be potential candidates for large-scale energy storage due to their high capacity, low cost, high safety and environmental friendliness.


Author(s):  
peisheng guo ◽  
gongzheng yang ◽  
Chengxin Wang

Aqueous zinc-ion batteries (AZIBs) have been regarded as alternative and promising large-scale energy storage systems due to their low cost, convenient manufacturing processes, and high safety. However, their development was...


2017 ◽  
Vol 5 (34) ◽  
pp. 17990-17997 ◽  
Author(s):  
Xianwen Wu ◽  
Yanhong Xiang ◽  
Qingjing Peng ◽  
Xiangsi Wu ◽  
Yehua Li ◽  
...  

Deficient spinel ZnMn2O4with a hollow porous structure was prepared through a solvothermal carbon template dispersed by polyvinyl pyrrolidone.


RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37830-37836 ◽  
Author(s):  
Wei Wei ◽  
Linlin Guo ◽  
Xiaoyang Qiu ◽  
Peng Qu ◽  
Maotian Xu ◽  
...  

Although many routes have been developed that can efficiently improve the electrochemical performance of LiFePO4 cathodes, few of them meet the urgent industrial requirements of large-scale production, low cost and excellent performance.


Author(s):  
Biswajit Ball ◽  
Pranab Sarkar

Rechargeable zinc ion batteries (ZIBs) have attained significant attention to the scientific community as an alternative to lithium ion batteries (LIBs) for large-scale energy storage systems owing to their high...


Author(s):  
Ping Shang ◽  
Yuanhao Liu ◽  
Yingying Mei ◽  
Lisha Wu ◽  
Yanfeng Dong

Aqueous zinc ion batteries (ZIBs) hold great promises for large-scale energy storage and wearable devices due to their low cost and high safety, but suffer from low capacity and energy...


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Qifei Li ◽  
Xianhong Rui ◽  
Dong Chen ◽  
Yuezhan Feng ◽  
Ni Xiao ◽  
...  

AbstractGiven the advantages of being abundant in resources, environmental benign and highly safe, rechargeable zinc-ion batteries (ZIBs) enter the global spotlight for their potential utilization in large-scale energy storage. Despite their preliminary success, zinc-ion storage that is able to deliver capacity > 400 mAh g−1 remains a great challenge. Here, we demonstrate the viability of NH4V4O10 (NVO) as high-capacity cathode that breaks through the bottleneck of ZIBs in limited capacity. The first-principles calculations reveal that layered NVO is a good host to provide fast Zn2+ ions diffusion channel along its [010] direction in the interlayer space. On the other hand, to further enhance Zn2+ ion intercalation kinetics and long-term cycling stability, a three-dimensional (3D) flower-like architecture that is self-assembled by NVO nanobelts (3D-NVO) is rationally designed and fabricated through a microwave-assisted hydrothermal method. As a result, such 3D-NVO cathode possesses high capacity (485 mAh g−1) and superior long-term cycling performance (3000 times) at 10 A g−1 (~ 50 s to full discharge/charge). Additionally, based on the excellent 3D-NVO cathode, a quasi-solid-state ZIB with capacity of 378 mAh g−1 is developed.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 31 ◽  
Author(s):  
Lyn Marie De Juan-Corpuz ◽  
Ryan Dula Corpuz ◽  
Anongnat Somwangthanaroj ◽  
Mai Thanh Nguyen ◽  
Tetsu Yonezawa ◽  
...  

Recently, rechargeable aqueous zinc-ion batteries (AZBs) have attracted extensive interest due to their safety, abundance, low cost, and low toxicity. However, aqueous electrolytes require a polymeric binder to prevent dissolution of the active material in addition to its binding properties. This study highlights binder-free, centimeter long, single-crystal, V2O5 nanofibers (BCS-VONF) on carbon cloth, as the cathode material for AZBs synthesized via a simple one-step hydrothermal process. BCS-VONF in 3.0 M Zn(OTf)2 exhibit promising electrochemical performance with excellent capacity retention. Even in the absence of a binder, BCS-VONF were found to be very stable in 3.0 M Zn(OTf)2. They will not yield to the dissolution and detachment of the active material on the current collector. The novel strategy described in this study is an essential step for the development of BCS-VONF on carbon cloth, as a promising cathode material for AZBs.


Sign in / Sign up

Export Citation Format

Share Document