scholarly journals Determination of Chromite Sands Suitability for Use in Moulding Sands

2017 ◽  
Vol 17 (2) ◽  
pp. 107-110
Author(s):  
K. Stec ◽  
J. Podwórny ◽  
B. Psiuk ◽  
Ł. Kozakiewicz

Abstract Using the available analytical methods, including the determination of chemical composition using wavelength-dispersive X-ray fluorescent spectroscopy technique and phase composition determined using X-ray diffraction, microstructural observations in a highresolution scanning microscope equipped with an X-ray microanalysis system as well as determination of characteristic softening and sintering temperatures using high-temperature microscope, the properties of particular chromite sands were defined. For the study has been typed reference sand with chemical properties, physical and thermal, treated as standard, and the sands of the regeneration process and the grinding process. Using these kinds of sand in foundries resulted in the occurrence of the phenomenon of the molding mass sintering. Impurities were identified and causes of sintering of a moulding sand based on chromite sand were characterized. Next, research methods enabling a quick evaluation of chromite sand suitability for use in the preparation of moulding sands were selected.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Liana Vella-Zarb ◽  
Ulrich Baisch

There is much interest and focus on solid forms of famciclovir. However, in spite of the abundance of reported differences in oral bioavailability, compressibility, and other physical–chemical properties of the various crystal forms of this drug, very little precise structural analysis is available in the literature to date. The form used in the commercial formulation is the anhydrous form I. Patents and patent applications report three different anhydrous crystalline forms on the basis of unindexed powder diffraction patterns. Single-crystal and variable-temperature X-ray diffraction experiments using the commercially available anhydrous form of famciclovir were carried out and led not only to the crystal structure determination of the anhydrous form I, but also to discovery of a new crystal form of anhydrous famciclovir from powder data.


Author(s):  
H. Catherine W. Skinner ◽  
Malcolm Ross ◽  
Clifford Frondel

A mineral is a naturally occurring, crystalline inorganic compound with a specific chemical composition and crystal structure. Minerals are commonly named to honor a person, to indicate the geographic area where the mineral was discovered, or to highlight some distinctive chemical, crystallographic, or physical characteristic of the substance. Each mineral sample has some obvious properties: color, shape, texture, and perhaps odor or taste. However, to determine the precise composition and crystal structure necessary to accurately identify the species, one or several of the following techniques must be employed: optical, x-ray diffraction, transmission electron microscopy and diffraction, and chemical and spectral analyses. The long history of bestowing names on minerals has provided some confusing legacies. Many mineral names end with the suffix “ite,” although not most of the common species; no standard naming practice has ever been adopted. Occasionally different names have been applied to samples of the same mineral that differ only in color or shape, but are identical to each other in chemical composition and crystal structure. These names, usually of the common rock-forming minerals, are often encountered and are therefore accepted as synonyms or as varieties of bona fide mineral species. The Fibrous Minerals list (Appendix 1) includes synonyms. A formal description of a mineral presents all the physical and chemical properties of the species. In particular, distinctive attributes that might facilitate identification are noted, and usually a chemical analysis of the first or “type” specimen on which the name was originally bestowed is included. As an example, the complete description of the mineral brucite (Mg(OH)2), as it appears in Dana’s System of Mineralogy, is presented as Appendix 3. Note the complexity of this chemically simple species and the range of information available. In the section on Habit (meaning shape or morphology) both acicular and fibrous forms are noted. The fibrous variety, which has the same composition as brucite, is commonly encountered (see Fig. 1.1D) and is known by a separate name, “nemalite.” Tables to assist in the systematic determination of a mineral species are usually based on quantitative measurements of optical properties (using either transmitted or reflected light, as appropriate) or on x-ray diffraction data.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 340 ◽  
Author(s):  
Oswaldo Sánchez-Dena ◽  
Carlos J. Villagómez ◽  
César D. Fierro-Ruíz ◽  
Artemio S. Padilla-Robles ◽  
Rurik Farías ◽  
...  

Existent methods for determining the composition of lithium niobate single crystals are mainly based on their variations due to changes in their electronic structure, which accounts for the fact that most of these methods rely on experimental techniques using light as the probe. Nevertheless, these methods used for single crystals fail in accurately predicting the chemical composition of lithium niobate powders due to strong scattering effects and randomness. In this work, an innovative method for determining the chemical composition of lithium niobate powders, based mainly on the probing of secondary thermodynamic phases by X-ray diffraction analysis and structure refinement, is employed. Its validation is supported by the characterization of several samples synthesized by the standard and inexpensive method of mechanosynthesis. Furthermore, new linear equations are proposed to accurately describe and determine the chemical composition of this type of powdered material. The composition can now be determined by using any of four standard characterization techniques: X-Ray Diffraction (XRD), Raman Spectroscopy (RS), UV-vis Diffuse Reflectance (DR), and Differential Thermal Analysis (DTA). In the case of the existence of a previous equivalent description for single crystals, a brief analysis of the literature is made.


2012 ◽  
Vol 602-604 ◽  
pp. 526-529
Author(s):  
Qing Wang ◽  
Lin Zhang ◽  
Ya Hui Zhang

Biomorphic TiO2 was prepared by high temperature pyrolysis and a modified sol-gel route. The morphology and microstructure of TiO2 samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the biomorphic TiO2 mainly consists of rutile TiO2, and replicates the shape and part microstructure of the carbon template.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Halyna Klym ◽  
Ivan Karbovnyk ◽  
Andriy Luchechko ◽  
Yuriy Kostiv ◽  
Viktorija Pankratova ◽  
...  

BaGa2O4 ceramics doped with Eu3+ ions (1, 3 and 4 mol.%) were obtained by solid-phase sintering. The phase composition and microstructural features of ceramics were investigated using X-ray diffraction and scanning electron microscopy in comparison with energy-dispersive methods. Here, it is shown that undoped and Eu3+-doped BaGa2O4 ceramics are characterized by a developed structure of grains, grain boundaries and pores. Additional phases are mainly localized near grain boundaries creating additional defects. The evolution of defect-related extended free volumes in BaGa2O4 ceramics due to the increase in the content of Eu3+ ions was studied using the positron annihilation lifetime spectroscopy technique. It is established that the increase in the number of Eu3+ ions in the basic BaGa2O4 matrix leads to the agglomeration of free-volume defects with their subsequent fragmentation. The presence of Eu3+ ions results in the expansion of nanosized pores and an increase in their number with their future fragmentation.


2018 ◽  
Vol 212 ◽  
pp. 161-166 ◽  
Author(s):  
Adam C. Lindsey ◽  
Matthew Loyd ◽  
Maulik K. Patel ◽  
Ryan Rawl ◽  
Haidong Zhou ◽  
...  

2013 ◽  
Vol 750-752 ◽  
pp. 546-549
Author(s):  
Jun Cong Wei ◽  
Shu Xian Liu ◽  
Sen Sen Niu ◽  
Wei Ping Ma ◽  
Jun Bo Tu

Al2O3-MgO unfired brick were prepared by using brown corundum, white corundum, fused magnesia and α-A12O3 as main starting materials, Al2O3-SiO2 gel powder as a binder. The effects of Al2O3-SiO2 gel powder on the strength of Al2O3-MgO unfired bricks were investigated. The phase composition was characterized by X-ray diffraction (XRD). The results showed that with an increase of Al2O3-SiO2 gel powder content, room temperature strength first increased and then decreased, and reached an optimum value at 5.5% addition. The hot modulus of rupture continuously increased. This mainly was related to the reactivity of Al2O3-SiO2 gel powder and the formation of mullite at high temperature.


Sign in / Sign up

Export Citation Format

Share Document