“Sintering” Models and In-Situ Experiments: Data Assimilation for Microstructure Prediction in SLS Additive Manufacturing of Nylon Components

MRS Advances ◽  
2020 ◽  
Vol 5 (29-30) ◽  
pp. 1593-1601
Author(s):  
W. Steven Rosenthal ◽  
Francesca C. Grogan ◽  
Yulan Li ◽  
Erin I. Barker ◽  
Josef F. Christ ◽  
...  

ABSTRACTSelective laser sintering methods are workhorses for additively manufacturing polymer-based components. The ease of rapid prototyping also means it is easy to produce illicit components. It is necessary to have a data-calibrated in-situ physical model of the build process in order to predict expected and defective microstructure characteristics that inform component provenance. Toward this end, sintering models are calibrated and characteristics such as component defects are explored. This is accomplished by assimilating multiple data streams, imaging analysis, and computational model predictions in an adaptive Bayesian parameter estimation algorithm. From these data sources, along with a phase-field model, bulk porosity distributions are inferred. Model parameters are constrained to physically-relevant search directions by sensitivity analysis, and then matched to predictions using adaptive sampling. Using this feedback loop, data-constrained estimates of sintering model parameters along with uncertainty bounds are obtained.

1973 ◽  
Vol 30 (10) ◽  
pp. 1447-1468 ◽  
Author(s):  
Everett J. Fee

A computer-based model for determining production by phytoplankton, integrated over depth and over an arbitrary time interval, is described. The solution incorporates light inhibition and uses the actual distribution of surface irradiance for the time interval of interest, since it is not possible to predict the detailed nature of cloudiness. Statistical procedures for estimating the model parameters from experimental data relating the rate of carbon uptake to irradiance are described. The model is applied to data collected from May 27, 1970 through February 3, 1971 from Lake Michigan.Integral primary production was bimodal at inshore and offshore stations with minimum production in midsummer and winter. There was great daily variability of integral production, due solely to variation of light. From this it is inferred that occasional in situ measurements would give a very poor knowledge of true seasonal trends.The model output was verified by performing two in situ experiments. The agreement was better than 95% on both dates. The model makes it possible to estimate integral primary production on a routine basis in large water bodies with well-mixed photic zones.


2014 ◽  
Vol 945-949 ◽  
pp. 2780-2783 ◽  
Author(s):  
Hui Zhang ◽  
Fang He ◽  
Chun Yan Han

This paper focused on predictive algorithm of network utilization for networked control system (NCS). Auto-Regressive and Moving Average (ARMA) model was presented for general network utilization, which with fixed constant and known white noise. ARMA model parameters are estimated using parameter estimation algorithm of Recursive Extended Least Squares (RELS). Finally, a simulation example was given to realize RELS of ARMA model. Predictive output of network utilization can be obtained and converge to real state.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Author(s):  
Kenneth S. Vecchio ◽  
John A. Hunt

In-situ experiments conducted within a transmission electron microscope provide the operator a unique opportunity to directly observe microstructural phenomena, such as phase transformations and dislocation-precipitate interactions, “as they happen”. However, in-situ experiments usually require a tremendous amount of experimental preparation beforehand, as well as, during the actual experiment. In most cases the researcher must operate and control several pieces of equipment simultaneously. For example, in in-situ deformation experiments, the researcher may have to not only operate the TEM, but also control the straining holder and possibly some recording system such as a video tape machine. When it comes to in-situ fatigue deformation, the experiments became even more complicated with having to control numerous loading cycles while following the slow crack growth. In this paper we will describe a new method for conducting in-situ fatigue experiments using a camputer-controlled tensile straining holder.The tensile straining holder used with computer-control system was manufactured by Philips for the Philips 300 series microscopes. It was necessary to modify the specimen stage area of this holder to work in the Philips 400 series microscopes because the distance between the optic axis and holder airlock is different than in the Philips 300 series microscopes. However, the program and interfacing can easily be modified to work with any goniometer type straining holder which uses a penrmanent magnet motor.


1998 ◽  
Vol 37 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Elisa Garvey ◽  
John E. Tobiason ◽  
Michael Hayes ◽  
Evelyn Wolfram ◽  
David A. Reckhow ◽  
...  

This paper reports on field studies and model development aimed at understanding coliform fate and transport in the Quabbin Reservoir, an oligotrophic drinking water supply reservoir. An investigation of reservoir currents suggested the importance of wind driven phenomena, and that both lateral and vertical circulation patterns exist. In-situ experiments of coliform decay suggested dependence on light intensity and yielded an appropriate decay coefficient to be used in CE-QUAL-W2, a two-dimensional hydrodynamic and water quality model. Modeling confirmed the sensitivity of reservoir outlet concentration to vertical variability within the reservoir, meteorological conditions, and location of coliform source.


Author(s):  
D.M. Seyedi ◽  
C. Plúa ◽  
M. Vitel ◽  
G. Armand ◽  
J. Rutqvist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document