Preparation and properties of uniform mixed colloidal particles; VI, copper(II)–yttrium(III), and copper(II)–lanthanum(III) compounds

1989 ◽  
Vol 4 (5) ◽  
pp. 1123-1131 ◽  
Author(s):  
François Ribot ◽  
Stanka Kratohvil ◽  
Egon Matijevié

Uniform spherical colloidal particles of mixed internal composition were obtained by aging at 90 °C solutions containing Cu(NO3)2 + Y(NO3)3 and Cu(NO3)2 + La(NO3)3, respectively, in the presence of urea. The molar ratio of metal ions in the solids precipitated from a given solution varied with the reaction time. After sufficiently long aging, this ratio corresponded closely to that in solutions in which the particles were generated. The original precipitates consisted of basic carbonates, which on calcination converted to mixed oxides of defined composition.

2018 ◽  
Vol 53 (1) ◽  
pp. 63-76
Author(s):  
M Shyamsundar ◽  
SZM Shamshuddin

Cordierite honeycombs were coated with solid acid catalysts such as ZrO2 (Z), Mo(VI)/ZrO2 (MZ) and Pt-SO4 2-/ZrO2 (PSZ) were prepared and characterized for their physico-chemical properties. These catalytic materials were characterized for their total surface acidity, crystallinity, functionality, elemental analysis and morphology by using techniques such as NH3 -TPD, PXRD, FTIR, ICP-OES, SEM and TEM respectively. These honeycomb catalysts were used for the liquid phase transesterification reaction of methyl salicylate (MS) with n-butanol (n-BA). Optimization of reaction conditions such as reaction temperature, reaction time, amount of catalysts and molar ratio of the reactants were carried out to obtain maximum yield of transester (n-butyl salicylate). n-butyl salicylate is obtained as major product and di-butyl ether is obtained as minor product. Highest total transester 70 % obtained by MZ and 80 % n-butyl salicylate and 10 % selectivity of di-butyl ether obtained in the presence of 0.4 g of honeycomb coated catalysts at a molar ratio of MS: n-BA 2:1, reaction temperature 403 K and reaction time 4 h. The energy of activation (16.81 and 14.92 kJ mol-1) and temperature coefficient (1.36 and 1.12) values of the MZ and PSZ were obtained from the kinetic studies. Pre-adsorption studies showed that the transesterification reaction methyl salicylate with n-butyl alcohol over honeycomb catalysts follows Langmuir-Hinshelwood mechanism. A reaction mechanism for transesterification is proposed based on the kinetic data. Reactivation and reusability studies of the honeycomb coated as well as powder form of catalysts up to 6 reaction cycles were also studied.Bangladesh J. Sci. Ind. Res.53(1), 63-76, 2018


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Mohammed Takase ◽  
Paul Kwame Essandoh ◽  
Rogers Kipkoech

AbstractSodium molybdate (Na2MoO4) has been synthesized and investigated as a heterogeneous solid catalyst for biodiesel from Camelina sativa seed oil. Transesterification reactions occurred under atmospheric conditions with relatively, low temperature short reaction time and normal pressure. The prepared catalyst was characterised by means of SEM, TGA, UV, XRD and FTIR. The properties of the biodiesel were compared with international standards. The transesterification reaction was very efficient with the optimum yield higher than 95% at methanol to oil molar ratio of 17:1, catalyst amount of 6%, reaction temperature of 60 °C and reaction time of 2.5 h. The molybdate complex had a high Lewis acidity and most certainly act as alcohol O–H bond leading to a transient species which has high nucleophilic character. The catalyst was easily recovered and after being washed for three times, showed capacity of recyclability for another catalytic reaction of five cycles with similar activity. The properties of the biodiesel were comparable to international standards.


2021 ◽  
Vol 10 (1) ◽  
pp. 157-168
Author(s):  
Biwei Luo ◽  
Pengfei Li ◽  
Yan Li ◽  
Jun Ji ◽  
Dongsheng He ◽  
...  

Abstract The feasibility of industrial waste fly ash as an alternative fluxing agent for silica in carbothermal reduction of medium-low-grade phosphate ore was studied in this paper. With a series of single-factor experiments, the reduction rate of phosphate rock under different reaction temperature, reaction time, particle size, carbon excess coefficient, and silicon–calcium molar ratio was investigated with silica and fly ash as fluxing agents. Higher reduction rates were obtained with fly ash fluxing instead of silica. The optimal conditions were derived as: reaction temperature 1,300°C, reaction time 75 min, particle size 48–75 µm, carbon excess coefficient 1.2, and silicon–calcium molar ratio 1.2. The optimized process condition was verified with other two different phosphate rocks and it was proved universally. The apparent kinetics analyses demonstrated that the activation energy of fly ash fluxing is reduced by 31.57 kJ/mol as compared with that of silica. The mechanism of better fluxing effect by fly ash may be ascribed to the fact that the products formed within fly ash increase the amount of liquid phase in the reaction system and promote reduction reaction. Preliminary feasibility about the recycling of industrial waste fly ash in thermal phosphoric acid industry was elucidated in the paper.


2010 ◽  
Vol 10 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. Murillo ◽  
J. Sarasa ◽  
M. Lanao ◽  
J. L. Ovelleiro

The degradation of chlorpyriphos by different advanced oxidation processes such as photo-Fenton, TiO2, TiO2/H2O2, O3 and O3/H2O2 was investigated. The photo-Fenton and TiO2 processes were optimized using a solar chamber as light source. The optimum dosages of the photo-Fenton treatment were: [H2O2]=0.01 M; [Fe3 + ]=10 mg l−1; initial pH = 3.5. With these optimum conditions total degradation was observed after 15 minutes of reaction time. The application of sunlight was also efficient as total degradation was achieved after 60 minutes. The optimum dosage using only TiO2 as catalyst was 1,000 mg l−1, obtaining the maximum degradation at 20 minutes of reaction time. On the other hand, the addition of 0.02 M of H2O2 to a lower dosage of TiO2 (10 mg l−1) provides the same degradation. The ozonation treatment achieved complete degradation at 30 minutes of reaction time. On the other hand, it was observed that the degradation was faster by adding H2O2 (H2O2/O3 molar ratio = 0.5). In this case, total degradation was observed after 20 minutes.


2011 ◽  
Vol 396-398 ◽  
pp. 2411-2415 ◽  
Author(s):  
Ping Lan ◽  
Li Hong Lan ◽  
Tao Xie ◽  
An Ping Liao

Isoamyl acetate was synthesized from isoamylol and glacial acetic acid with strong acidic cation exchanger as catalyst. The effects of reaction conditions such as acid-alcohol ratio, reaction time, catalyst dosage to esterification reaction have been investigated and the optimum reaction conditions can be concluded as: the molar ratio of acetic acid to isoamylol 0.8:1, reaction time 2h, 25 % of catalyst (quality of acetic acid as benchmark). The conversion rate can reach up to 75.46%. The catalytic ability didn’t reduce significantly after reusing 10 times and the results showed that the catalyst exhibited preferably catalytic activity and reusability.


2010 ◽  
Vol 658 ◽  
pp. 29-32 ◽  
Author(s):  
Kanit Soongprasit ◽  
Duangdao Aht-Ong ◽  
Viboon Sricharoenchaikul ◽  
Duangduen Atong

. La1-xCexCoO3 (x=0, 0.2, and 0.4) perovskite-type mixed oxides using polyvinyl alcohol (PVA) as complexing agent at two molar ratio of metal ion to PVA (1:1 and 1:2) were successfully prepared by sol-gel process. The precursor included lanthanum (II) nitrate hexahydrate, cerium (II) nitrate hexahydrate, and cobalt (II) nitrate hexahydrate where polyvinyl alcohol was added as complexing agent. The suitable condition of Cerium (Ce) substitution and PVA molar ratio were established for further application in hydrocarbon conversion to high value added products. TGA thermogram of as-prepared precursor showed that PVA absolutely decomposed at temperature higher than 500°C. XRD patterns of calcined catalyst showed both LaCoO3 rhombohedral and CeO2 cubic structures that confirmed the formation of mixed crystal structure. Nevertheless, Co3O4 slightly appeared with low peak intensity which came from the oxidation reaction of as-prepared catalyst during calcinations. XRD showed that PVA did not effect to crystal structure of synthesized catalyst. Higher PVA content added in the precursor cause the reduction of crystal growth of catalyst in calcinations step. In contrast, morphology of catalyst is directly related with PVA content such that the spongy and sheet-like structure were formed with increasing PVA content which prevented the agglomeration of particles. The results showed that PVA content play an important role in morphology of perovskite-type mixed oxide catalysts but did not affected to their crystal structures.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammad Ahmadian ◽  
Sohyla Reshadat ◽  
Nader Yousefi ◽  
Seyed Hamed Mirhossieni ◽  
Mohammad Reza Zare ◽  
...  

Due to complex composition of leachate, the comprehensive leachate treatment methods have been not demonstrated. Moreover, the improper management of leachate can lead to many environmental problems. The aim of this study was application of Fenton process for decreasing the major pollutants of landfill leachate on Kermanshah city. The leachate was collected from Kermanshah landfill site and treated by Fenton process. The effect of various parameters including solution pH, Fe2+and H2O2dosage, Fe2+/H2O2molar ratio, and reaction time was investigated. The result showed that with increasing Fe2+and H2O2dosage, Fe2+/H2O2molar ratio, and reaction time, the COD, TOC, TSS, and color removal increased. The maximum COD, TOC, TSS, and color removal were obtained at low pH (pH: 3). The kinetic data were analyzed in term of zero-order, first-order, and second-order expressions. First-order kinetic model described the removal of COD, TOC, TSS, and color from leachate better than two other kinetic models. In spite of extremely difficulty of leachate treatment, the previous results seem rather encouraging on the application of Fenton’s oxidation.


2015 ◽  
Vol 17 (4) ◽  
pp. 23-31 ◽  
Author(s):  
Agnieszka Wróblewska ◽  
Edyta Makuch ◽  
Małgorzata Dzięcioł ◽  
Roman Jędrzejewski ◽  
Paweł Kochmański ◽  
...  

Abstract This work presents the studies on the optimization the process of allyl alcohol epoxidation over the Ti-SBA-15 catalyst. The optimization was carried out in an aqueous medium, wherein water was introduced into the reaction medium with an oxidizing agent (30 wt% aqueous solution of hydrogen peroxide) and it was formed in the reaction medium during the processes. The main investigated technological parameters were: the temperature, the molar ratio of allyl alcohol/hydrogen peroxide, the catalyst content and the reaction time. The main functions the process were: the selectivity of transformation to glycidol in relation to allyl alcohol consumed, the selectivity of transformation to diglycidyl ether in relation to allyl alcohol consumed, the conversion of allyl alcohol and the selectivity of transformation to organic compounds in relation to hydrogen peroxide consumed. The analysis of the layer drawings showed that in water solution it is best to conduct allyl alcohol epoxidation in direction of glycidol (selectivity of glycidol 54 mol%) at: the temperature of 10–17°C, the molar ratio of reactants 0.5–1.9, the catalyst content 2.9–4.0 wt%, the reaction time 2.7–3.0 h and in direction of diglycidyl ether (selectivity of diglycidyl ether 16 mol%) at: the temperature of 18–33°C, the molar ratio of reactants 0.9–1.65, the catalyst content 2.0–3.4 wt%, the reaction time 1.7–2.6 h. The presented method allows to obtain two very valuable intermediates for the organic industry.


Author(s):  
Vijay A. Juwar ◽  
Ajit P. Rathod

Abstract The present study deals with the treatment of complex waste (WW) treated for removal of chemical oxygen demand (COD) of the food industry by a sono-Fenton process using a batch reactor. The response surface methodology (RSM) was employed to investigate the five independent variables, such as reaction time, the molar ratio of H2O2/Fe2+, volume ratio of H2O2/WW, pH of waste, and ultrasonic density on COD removal. The experimental data was optimized. The optimization yields the conditions: Reaction time of 24 min, HP:Fe molar ratio of 2.8, HP:WW volume ratio of 1.9 ml/L, pH of 3.6 and an ultrasonic density of 1.8 W/L. The predicted value of COD was 91% and the experimental result was 90%. The composite desirability value (D) of the predicted percent of COD removal at the optimized level of variables was close to one (D = 0.991).


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


Sign in / Sign up

Export Citation Format

Share Document