Electron microscopy of the Pb-Sr-Ca-Er-Cu-O superconductor

1990 ◽  
Vol 5 (2) ◽  
pp. 251-257 ◽  
Author(s):  
R. Ramesh ◽  
E. Wang ◽  
L. H. Greene ◽  
M. S. Hegde ◽  
J-M. Tarascon ◽  
...  

The structure and microstructure of a solid state processed Pb-Sr-Ca-Er-Cu-O superconductor have been investigated by transmission electron microscopy. In addition to the majority superconducting phase, at least two other impurity phases have been observed. The superconducting phase is a layered structure similar to the Bi2Sr2CaCu2Oy compound, with an extra Cu atom between the two PbO layers. Stacking defects inside the grain have been observed. A grain boundary amorphous phase has also been observed. The steps in the resistivity-temperature plot and the consequent absence of Tc,0 above 8 K are attributed to either the presence of the Pb2Sr2Cu2Oy unit cell at the grain boundary and/or a local enrichment of oxygen at the grain boundaries. Superlattice spots in the [100] zone axis diffraction patterns from regions enriched in Ca and Er with respect to the nominal composition are interpreted as due to ordering of Sr and Ca/Er in the Sr sites.

2009 ◽  
Vol 65 (6) ◽  
pp. 694-698 ◽  
Author(s):  
Y. Han ◽  
I. M. Reaney ◽  
D. S. Tinberg ◽  
S. Trolier-McKinstry

SrRuO3 (SRO) thin films grown on (001)p (p = pseudocubic) oriented LaAlO3 (LAO) by pulsed laser deposition have been characterized using transmission electron microscopy. Observations along the 〈100〉p directions suggests that although the SRO layer maintains a pseudocube-to-pseudocube orientation relationship with the underlying LAO substrate, it has a ferroelastic domain structure associated with a transformation on cooling to room temperature to an orthorhombic Pbnm phase (a − a − c + Glazer tilt system). In addition, extra diffraction spots located at ±1/6(ooo)p and ±1/3(ooo)p (where `o' indicates an index with an odd number) positions were obtained in 〈110〉p zone-axis diffraction patterns. These were attributed to the existence of high-density twins on {111}p pseudocubic planes within the SrRuO3 films rather than to more conventional mechanisms for the generation of superstructure reflections.


2007 ◽  
Vol 561-565 ◽  
pp. 111-114
Author(s):  
Hui Ping Ren ◽  
Hai Yan Wang ◽  
Zong Chang Liu ◽  
Lin Chen

The precipitation of copper during aging at 650oC within ferrite in high-purity Fe-1.03wt%Cu steel was examined by transmission electron microscopy, and the influence of precipitation particles on property of experimental steel was investigated. The microstructure and the corresponding diffraction patterns of different zone axis were analyzed. Nano-scale copper-rich clusters with B2-like structure and high density dislocation around precipitate was observed during either solution treatment or aging. Nano-scale metastable precipitates and high density around them were found to play the most important role for increasing steel strength.


1994 ◽  
Vol 9 (10) ◽  
pp. 2487-2489 ◽  
Author(s):  
F.R. Sivazlian ◽  
J.T. Glass ◽  
B.R. Stoner

Highly oriented diamond thin films grown on silicon via microwave plasma chemical vapor deposition were examined by transmission electron microscopy. In the plan view, defects appearing at the grain boundary were easily observed. (100) faceted grains that appeared to have coalesced were connected at their interfaces by dislocations characteristic of a low angle grain boundary. From Burgers vector calculations and electron diffraction patterns, the azimuthal rotation between grains was measured to be between 0 and 6°. The defect densities of these films are compared to reports from (100) textured randomly oriented films, and the relative improvement due to the reduction of misorientation and grain boundary angles is discussed.


Author(s):  
Joseph J. Comer ◽  
Charles Bergeron ◽  
Lester F. Lowe

Using a Van De Graaff Accelerator thinned specimens were subjected to bombardment by 3 MeV N+ ions to fluences ranging from 4x1013 to 2x1016 ions/cm2. They were then examined by transmission electron microscopy and reflection electron diffraction using a 100 KV electron beam.At the lowest fluence of 4x1013 ions/cm2 diffraction patterns of the specimens contained Kikuchi lines which appeared somewhat broader and more diffuse than those obtained on unirradiated material. No damage could be detected by transmission electron microscopy in unannealed specimens. However, Dauphiné twinning was particularly pronounced after heating to 665°C for one hour and cooling to room temperature. The twins, seen in Fig. 1, were often less than .25 μm in size, smaller than those formed in unirradiated material and present in greater number. The results are in agreement with earlier observations on the effect of electron beam damage on Dauphiné twinning.


Author(s):  
Ryuichiro Oshima ◽  
Shoichiro Honda ◽  
Tetsuo Tanabe

In order to examine the origin of extra diffraction spots and streaks observed in selected area diffraction patterns of deuterium irradiated silicon, systematic diffraction experiments have been carried out by using parallel beam illumination.Disc specimens 3mm in diameter and 0.5mm thick were prepared from a float zone silicon single crystal(B doped, 7kΩm), and were chemically thinned in a mixed solution of nitric acid and hydrogen fluoride to make a small hole at the center for transmission electron microscopy. The pre-thinned samples were irradiated with deuterium ions at temperatures between 300-673K at 20keV to a dose of 1022ions/m2, and induced lattice defects were examined under a JEOL 200CX electron microscope operated at 160kV.No indication of formation of amorphous was obtained in the present experiments. Figure 1 shows an example of defects induced by irradiation at 300K with a dose of 2xl021ions/m2. A large number of defect clusters are seen in the micrograph.


1994 ◽  
Vol 77 (2) ◽  
pp. 339-348 ◽  
Author(s):  
Thomas Hoche ◽  
Philip R. Kenway ◽  
Hans-Joachim Kleebe ◽  
Manfred Ruhle ◽  
Patricia A. Morris

1990 ◽  
Vol 183 ◽  
Author(s):  
J. L. Batstone

AbstractMotion of ordered twin/matrix interfaces in films of silicon on sapphire occurs during high temperature annealing. This process is shown to be thermally activated and is analogous to grain boundary motion. Motion of amorphous/crystalline interfaces occurs during recrystallization of CoSi2 and NiSi2 from the amorphous phase. In-situ transmission electron microscopy has revealed details of the growth kinetics and interfacial roughness.


Author(s):  
K. Seshan ◽  
H.-R. Wenk

Asbestos fibre texture occurs in various mineral groups (e.g. chrysotile, crocidolite, tremolite, grunerite, tourmaline) and it has been established that at least chrysotile is carcinogenic. We are investigating various aspects of the asbestos structure, with transmission electron microscopy (TEM) (1) in order to develop methods for unequivocal asbestos identification using minute samples and also to determine defects responsible for the fibre structure in these minerals which often occur as large, we 11-developed single crystals.In order to do this, we have started by investigating clinoamphibole asbestos such as tremolite Ca2Mg5[Si8O22] (OH, F)2 and crocidolite Na2 (Mg, Al, Fe3+, Fe2+) (Si8O22) (OH, F )2 , from California localities. In crocidoli te - asbestos we observed a high density of very narrow microtwins parallel to the fibre axis [001] (Fig. 1). They are often only 50-100Å wide. Diffraction patterns display the typical twin arrangement of spots and although preliminary contrast experiments are not yet conclusive the twin plane appears to be (100).


1987 ◽  
Vol 96 ◽  
Author(s):  
M. H. Ghandehari ◽  
J. Fidler

ABSTRACTMicrostructures of Nd15−xDyxFe77B8 prepared by alloying with Dy, and by using Dy2O3 as a sinl'ken adidive, have been determined using electron microprobe and transmission electron microscopy. The results have shown a higher Dy concentration near the grain boundaries of the 2–14–1 phase for magnets doped with Dy2O 3, as compared to the Dy-alloyed magnets. A two-step post sintering heat treatment was also studied for the two systems. The resultant concentration gradient of Dy in the 2–14–1 phase of the oxide-doped magnets is explained by the reaction of Dy2O3 with the Nd-rich grain boundary phase and its slow diffusion into thg 4–14–1 phase. Increased Dy concentration near the grain boundary is more effective in improving the coercivity, as domain reversal nucleation originates at or near this region.


2015 ◽  
Vol 33 (6) ◽  
pp. 395-401 ◽  
Author(s):  
Ramasis Goswami

AbstractTransmission electron microscopy (TEM) was employed to investigate the dissolution behavior of nanocrystalline grain boundary T1 precipitates in Al-3Cu-2Li. These grain boundary T1 plates exhibit an orientation relation with matrix, with the (1-11)α-Al parallel to (0001)T1 and [022]α-Al parallel to [10-10]T1, which is similar to the orientation relationship of T1 plates formed within grains. TEM studies showed that these grain boundary T1 plates react readily in moist air. As a result of the localized dissolution, the Cu-rich clusters form onto T1, which is consistent with the localized dissolution behavior observed in nanocrystalline S phase in Al-Cu-Mg.


Sign in / Sign up

Export Citation Format

Share Document