Microwave-hydrothermal processing of metal powders

1995 ◽  
Vol 10 (7) ◽  
pp. 1687-1692 ◽  
Author(s):  
Sridhar Komarneni ◽  
Rajyalakshmi Pidugu ◽  
Qing Hua Li ◽  
Rustum Roy

Novel microwave-hydrothermal processing has been developed by us recently for the synthesis of a wide variety of ceramic powders. Herein, we report the use of microwave-hydrothermal processing to synthesize several metal powders such as Cu, Ni, Co, and Ag by reducing their corresponding metal salts or hydroxides with ethylene glycol. Metal powders have been produced extremely rapidly a (few minutes) by microwave catalysis. The kinetics of metal powder synthesis have been increased by at least an order of magnitude by microwave-hydrothermal processing compared to the conventional refluxing process in ethylene glycol at about 195 °C.

1993 ◽  
Vol 8 (12) ◽  
pp. 3176-3183 ◽  
Author(s):  
Sridhar Komarneni ◽  
Q. Li ◽  
Karin M. Stefansson ◽  
Rustum Roy

Microwave-hydrothermal processing has so far been used only to dissolve inorganic solids for chemical analysis. We report herein the use of microwave-hydrothermal processing to synthesize various ceramic powders in binary and polynary systems. We describe the synthesis of some electroceramic powders such as BaTiO3, SrTiO3, Sr0.5Ba0.5TiO3, PbTiO3, BaZrO3, SrZrO3, Pb(Zr0.52Ti0.48)O3, and pyrochlore phases with the Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3 compositions by this novel microwave-hydrothermal processing technique.


1996 ◽  
Vol 11 (8) ◽  
pp. 1866-1869 ◽  
Author(s):  
Sridhar Komarneni ◽  
Q. H. Li ◽  
Rustum Roy

We have compared the microwave-hydrothermal (M-H) processing with conventional hydrothermal (C-H) processing in the preparation of two layered anion exchangers, i.e., Mg3Al(OH)8NO3 · nH2O and Ni1-xZn2x(OH)2(CH3COO)2x · nH2O. Both these phases can be crystallized more rapidly (an order of magnitude) under M-H processing compared to C-H processing. The above layered mixed basic salt of Ni and Zn was found to exhibit very high selectivity for PO4= (Kd = 15,000). Its order of selectivity for various anions in the presence of 0.1 N̲ NaC1 (ratio of C1- to anion in question is 100) increases as follows: PO4= ≫ SO4= > NO3-.


Author(s):  
Zhiyuan Chen ◽  
Christiaan Zeilstra ◽  
Jan van der Stel ◽  
Jilt Sietsma ◽  
Yongxiang Yang

AbstractIn order to understand the pre-reduction behaviour of fine hematite particles in the HIsarna process, change of morphology, phase and crystallography during the reduction were investigated in the high temperature drop tube furnace. Polycrystalline magnetite shell formed within 200 ms during the reduction. The grain size of the magnetite is in the order of magnitude of 10 µm. Lath magnetite was observed in the partly reduced samples. The grain boundary of magnetite was reduced to molten FeO firstly, and then the particle turned to be a droplet. The Johnson-Mehl-Avrami-Kolmogorov model is proposed to describe the kinetics of the reduction process. Both bulk and surface nucleation occurred during the reduction, which leads to the effect of size on the reduction rate in the nucleation and growth process. As a result, the reduction rate constant of hematite particles increases with the increasing particle size until 85 µm. It then decreases with a reciprocal relationship of the particle size above 85 µm.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1156
Author(s):  
Dejia Chen ◽  
Lisha Lei ◽  
Meishuai Zou ◽  
Xiaodong Li

The non-isothermal crystallization kinetics of double-crystallizable poly(ethylene glycol)–poly(l-lactide) diblock copolymer (PEG-PLLA) and poly(ethylene glycol) homopolymer (PEG) were studied using the fast cooling rate provided by a Fast-Scan Chip-Calorimeter (FSC). The experimental data were analyzed by the Ozawa method and the Kissinger equation. Additionally, the total crystallization rate was represented by crystallization half time t1/2. The Ozawa method is a perfect success because secondary crystallization is inhibited by using fast cooling rate. The first crystallized PLLA block provides nucleation sites for the crystallization of PEG block and thus promotes the crystallization of the PEG block, which can be regarded as heterogeneous nucleation to a certain extent, while the method of the PEG block and PLLA block crystallized together corresponds to a one-dimensional growth, which reflects that there is a certain separation between the crystallization regions of the PLLA block and PEG block. Although crystallization of the PLLA block provides heterogeneous nucleation conditions for PEG block to a certain extent, it does not shorten the time of the whole crystallization process because of the complexity of the whole crystallization process including nucleation and growth.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 691
Author(s):  
Yugang Zhao ◽  
Zichao Zuo ◽  
Haibo Tang ◽  
Xin Zhang

Icing/snowing/frosting is ubiquitous in nature and industrial processes, and the accretion of ice mostly leads to catastrophic consequences. The existing understanding of icing is still limited, particularly for aircraft icing, where direct observation of the freezing dynamics is inaccessible. In this work, we investigate experimentally the impact and freezing of a water drop onto the supercooled substrate at extremely low vapor pressure, to mimic an aircraft passing through clouds at a relatively high altitude, engendering icing upon collisions with pendant drops. Special attention is focused on the ice coverage induced by an impinging drop, from the perimeter pointing outward along the radial direction. We observed two freezing regimes: (I) spread-recoil-freeze at the substrate temperature of Ts = −15.4 ± 0.2 °C and (II) spread (incomplete)-freeze at the substrate temperature of Ts = −22.1 ± 0.2 °C. The ice coverage is approximately one order of magnitude larger than the frozen drop itself, and counterintuitively, larger supercooling yields smaller ice coverage in the range of interest. We attribute the variation of ice coverage to the kinetics of vapor diffusion in the two regimes. This fundamental understanding benefits the design of new anti-icing technologies for aircraft.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4182
Author(s):  
Alan Wilmański ◽  
Magdalena Zarzecka-Napierała ◽  
Zbigniew Pędzich

This paper describes combusting loose powder beds of mixtures of aluminum metal powders and aluminum oxide powders with various grain sizes under various nitrogen pressure. The synthesis conditions required at least 20/80 weight ratio of aluminum metal powder to alumina powder in the mix to reach approximately 80 wt% of γ-AlON in the products. Finely ground fused white alumina with a mean grain size of 5 μm was sufficient to achieve results similar to very fine alumina with 0.3 μm grains. A lower nitrogen pressure of 1 MPa provided good results, allowing a less robust apparatus to be used. The salt-assisted combustion synthesis upon addition of 10 wt% of ammonium nitrite resulted in a slight increase in product yield and allowed lower aluminum metal powder content in mixes to be ignited. Increasing the charge mass five times resulted in a very similar γ-AlON yield, providing a promising technology for scaling up. Synthesis in loose powder beds could be utilized for effective production of relatively cheap and uniform AlON powder, which could be easily prepared for forming and sintering without intensive grounding and milling, which usually introduce serious contamination.


1958 ◽  
Vol 50 (9) ◽  
pp. 1283-1288 ◽  
Author(s):  
Julius Roth ◽  
F. S. Stow ◽  
D. L. Kouba
Keyword(s):  

Biochemistry ◽  
1985 ◽  
Vol 24 (14) ◽  
pp. 3814-3820 ◽  
Author(s):  
J. A. Biosca ◽  
F. Travers ◽  
T. E. Barman ◽  
R. Bertrand ◽  
E. Audemard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document