The microstructure and creep deformation of hot-pressed Si3N4 with different amounts of sintering additives

1996 ◽  
Vol 11 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Sang-Young Yoon ◽  
Takashi Akatsu ◽  
Eiichi Yasuda

Compressive creep deformation of hot-pressed silicon nitride with different amounts of grain boundary glassy phase was investigated at 1300–1400 °C under 30–100 MPa. The stress exponent of the creep rate was determined to be nearly unity. The apparent activation energy of silicon nitride with a larger amount of glassy phase was measured to be about 700 kJ/mole, and that with a smaller amount of glassy phase was found to be 400 kJ/mole. In addition, the microstructural observation found that no cavity appeared and grain boundary glass was recrystallized during creep test. Thus, the rate-limiting steps in solution/precipitation creep mechanism change from the solution-reprecipitation of Si3N4 grains to the diffusion through the grain boundary with increasing the amount of glassy phase.

2005 ◽  
Vol 488-489 ◽  
pp. 749-752 ◽  
Author(s):  
Su Gui Tian ◽  
Keun Yong Sohn ◽  
Hyun Gap Cho ◽  
Kyung Hyun Kim

Creep behavior of AM50-0.4% Sb-0.9%Gd alloy has been studied at temperatures ranging from 150 to 200°C and at stresses ranging from 40 to 90 MPa. Results show that the creep rate of AM50-0.4%Sb-0.9%Gd alloy was mainly controlled by dislocation climb at low stresses under 50 MPa. The activation energy for the creep was 131.2 ± 10 kJ/mol and the stress exponent was in the range from 4 to 9 depending on the applied stress. More than one deformation-mechanism were involved during the creep of this alloy. Microstructures of the alloy consist of a–Mg matrix and fine particles, distinguished as Mg17Al12, Sb2Mg3, and Mg2Gd or Al7GdMn5 that were homogeneously distributed in the matrix of the alloy, which effectively reduced the movement of dislocations, enhancing the creep resistance. Many dislocations were identified to be present on non-basal planes after creep deformation.


1978 ◽  
Vol 21 (85) ◽  
pp. 429-444 ◽  
Author(s):  
D. R. Homer ◽  
J. W. Glen

AbstractMonocrystals and bicrystals of ice have been creep tested at temperatures between 4 and — 30°C. The bicrystals had a single grain boundary running parallel to the tensile axis; this configuration inhibited grain-boundary slip between the two grains. The creep tests, which were carried out at constant stress σ and temperature T, yielded data of strain ϵ for time elapsed since the start of the test. These data showed accelerating creep for both monocrystals and bicrystals at all strain levels. Strain-rates were derived at strains of 0.01, 0.05. and 0.10, and these rates were fitted to the expressionk is Boltzmann’s constant and E is the creep activation energy. Derived values of n were 1.9 for monocrystals and 2.9 for bicrystals. The creep activation energy was found to be 78 kJ/mol for monocrystals and 75 kJ/mol for bicrystals. The processes of creep deformation in mono-, bi- and polycrystals are discussed.


1969 ◽  
Vol 8 (52) ◽  
pp. 131-145 ◽  
Author(s):  
Malcolm Mellor ◽  
Richard Testa

Creep tests on homogeneous, isotropic polycrystalline ice gave an apparent activation energy for creep of 16.4 kcal/mol (68.8 kJ/mol) over the temperature range −10° to −60° C. Above −10° C the Arrhenius relation for temperature dependence is invalid, and creep rate becomes progressively more temperature dependent as the melting point is approached. Between −20° and −50° C the apparent activation energy for creep of a single crystal of ice was found to be 16.5 kcal/mol (69.1 kJ/mol). A complete creep curve for a single crystal loaded in uniaxial compression parallel to the basal plane was qualitatively similar to the classical creep curve; creep rate at all stages was very much faster than for polycrystalline ice under the same conditions. Creep tests on polycrystalline ice at 0° C gave a stress/strain-rate relation for that temperature, but its precise meaning is unclear, since recrystallization complicated the results.


1969 ◽  
Vol 8 (52) ◽  
pp. 131-145 ◽  
Author(s):  
Malcolm Mellor ◽  
Richard Testa

Creep tests on homogeneous, isotropic polycrystalline ice gave an apparent activation energy for creep of 16.4 kcal/mol (68.8 kJ/mol) over the temperature range −10° to −60° C. Above −10° C the Arrhenius relation for temperature dependence is invalid, and creep rate becomes progressively more temperature dependent as the melting point is approached. Between −20° and −50° C the apparent activation energy for creep of a single crystal of ice was found to be 16.5 kcal/mol (69.1 kJ/mol). A complete creep curve for a single crystal loaded in uniaxial compression parallel to the basal plane was qualitatively similar to the classical creep curve; creep rate at all stages was very much faster than for polycrystalline ice under the same conditions. Creep tests on polycrystalline ice at 0° C gave a stress/strain-rate relation for that temperature, but its precise meaning is unclear, since recrystallization complicated the results.


2001 ◽  
Vol 27 (5) ◽  
pp. 603-605 ◽  
Author(s):  
Haitao Yang ◽  
Lin Gao ◽  
Gangqin Shao ◽  
Runze Xu ◽  
Peiyun Huang

2010 ◽  
Vol 638-642 ◽  
pp. 1596-1601 ◽  
Author(s):  
Yang Shan Sun ◽  
Jing Bai ◽  
Feng Xue

The creep behavior of two series of magnesium alloys, Mg-4Al based alloys with strontium addition and binary Mg-Nd alloys, has been studied. Results show that the high creep properties achieved by the Mg-Nd alloys are attributed to the precipitation of tiny dispersed β’ particles, which form and effectively restrict the dislocation slipping and climb during creep deformation. In terms of values of the stress exponent and apparent activation energy gained from systematic creep tests, the mechanism responsible for creep deformation of the Mg-Nd alloys is inferred as dislocation climb, which is supported by TEM observations performed on the Mg-2Nd alloy after creep test. For the Mg-4Al based alloys, however, microstructural observations reveal that the significant improvement on creep properties caused by Sr addition is accounted for the formation of an interphase network consisting of Al4Sr and a Mg-Al-Sr ternary compound distributing at grain boundaries. The breakage of the interphase network after extrusion results in a sharp drop of creep properties, indicating the creep deformation of the alloy is controlled mainly by grain boundary sliding, which is in contradiction to the mechanism for creep of the alloys inferred by the classical criterions based on the values of stress exponent and apparent activation energy.


1978 ◽  
Vol 21 (85) ◽  
pp. 429-444 ◽  
Author(s):  
D. R. Homer ◽  
J. W. Glen

Abstract Monocrystals and bicrystals of ice have been creep tested at temperatures between 4 and — 30°C. The bicrystals had a single grain boundary running parallel to the tensile axis; this configuration inhibited grain-boundary slip between the two grains. The creep tests, which were carried out at constant stress σ and temperature T, yielded data of strain ϵ for time elapsed since the start of the test. These data showed accelerating creep for both monocrystals and bicrystals at all strain levels. Strain-rates were derived at strains of 0.01, 0.05. and 0.10, and these rates were fitted to the expression k is Boltzmann’s constant and E is the creep activation energy. Derived values of n were 1.9 for monocrystals and 2.9 for bicrystals. The creep activation energy was found to be 78 kJ/mol for monocrystals and 75 kJ/mol for bicrystals. The processes of creep deformation in mono-, bi- and polycrystals are discussed.


Sign in / Sign up

Export Citation Format

Share Document