Growth-rate dependence of the thermal conductivity of chemical-vapor-deposited diamond

1999 ◽  
Vol 14 (9) ◽  
pp. 3720-3724 ◽  
Author(s):  
Naira M. Balzaretti ◽  
Albert Feldman ◽  
Edgar S. Etz ◽  
Roy Gat

The in-plane thermal diffusivity of chemical-vapor-deposited diamond films was measured as a function of diamond-growth rate. The films, 0.1–0.4 mm thick, were prepared in microwave-plasma reactor at growth rates ranging from 1 to 10 μm/h. A modification of Ångstöm's method was used to perform the diffusivity measurements. The thermal conductivity calculated from the thermal diffusivity shows an inverse relationship with growth rate. Analyses of Raman spectra indicate that both the line shifts and the line widths of the diamond Raman peak are practically independent of the deposition rate, except for the specimen grown at the highest growth rate.

1990 ◽  
Vol 5 (8) ◽  
pp. 1591-1594 ◽  
Author(s):  
A. V. Hetherington ◽  
C. J. H. Wort ◽  
P. Southworth

The crystalline perfection of microwave plasma assisted chemical vapor deposited (MPACVD) diamond films grown under various conditions has been examined by TEM. Most CVD diamond films thus far reported contain a high density of defects, predominantly twins and stacking faults on {111} planes. We show that under appropriate growth conditions, these planar defects are eliminated from the center of the crystallites, and occur only at grain boundaries where the growing crystallites meet.


CrystEngComm ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 2138-2146 ◽  
Author(s):  
G. Shu ◽  
V. G. Ralchenko ◽  
A. P. Bolshakov ◽  
E. V. Zavedeev ◽  
A. A. Khomich ◽  
...  

Homoepitaxial diamond growth may proceed with stops and resumptions to produce thick crystals. We found the resumption procedure to take place in a complex way, via a disturbance of step growth features, followed by the recovery after a certain time.


1993 ◽  
Vol 317 ◽  
Author(s):  
M.M. Waitew ◽  
S. Ismat Shah

ABSTRACTDiamond films were deposited in a microwave plasma chemical vapor deposition (MPCVD) system on Ta substrates using a mixture of hydrogen and methane gases. The films were grown for varying lengths of time to provide samples with no diamond growth to a continuous diamond film. These films were analyzed using X-ray photoelectron spectroscopy (XPS) in order to understand the time dependent interactions between the substrate and the incoming carbon flux. Photoelectron peaks in the Ta 4f, C Is and Ols regions have been analyzed. In the initial stages of growth, a layer of carbide forms on the substrate. As the substrate becomes supersaturated with carbon, graphite starts to form on the surface. A diamond peak begins to appear after about 30 Minutes of deposition.


1997 ◽  
Vol 12 (10) ◽  
pp. 2686-2698 ◽  
Author(s):  
L. Fayette ◽  
B. Marcus ◽  
M. Mermoux ◽  
N. Rosman ◽  
L. Abello ◽  
...  

A sequential analysis of the growth of diamond films on silicon substrates in a microwave plasma assisted chemical vapor deposition (CVD) reactor has been performed by Raman spectroscopy. The plasma was switched off during measurements, but the substrate heating was maintained to minimize thermoelastic stresses. The detectivity of the present experimental setup has been estimated to be about a few tens of μmg/cm2. From such a technique, one expects to analyze different aspects of diamond growth on a non-diamond substrate. The evolution of the signals arising from the substrate shows that the scratching treatment used to increase the nucleation density induces an amorphization of the silicon surface. This surface is annealed during the first step of deposition. The evolution of the line shape of the spectra indicates that the non-diamond phases are mainly located in the grain boundaries. The variation of the integrated intensity of the Raman signals has been interpreted using a simple absorption model. A special emphasis was given to the evolution of internal stresses during deposition. It was verified that compressive stresses were generated when coalescence of crystals took place.


1994 ◽  
Vol 9 (8) ◽  
pp. 2154-2163 ◽  
Author(s):  
K.J. Grannen ◽  
R.P.H. Chang

Microwave plasma-enhanced chemical vapor deposition of diamond films on silicon carbide and tungsten carbide (with 6% cobalt) surfaces using fluorocarbon gases has been demonstrated. No diamond powder pretreatment is necessary to grow these films with a (100) faceted surface morphology. The diamond films are characterized by scanning electron microscopy and Raman spectroscopy. The proposed nucleation and growth mechanism involves etching of the noncarbon component of the carbide by atomic fluorine to expose surface carbon atoms and diamond nucleation and growth on these exposed carbon atoms. Hydrogen is necessary in the growth process to limit the rapid etching of the carbide substrates by corrosive fluorine atoms.


2013 ◽  
Vol 651 ◽  
pp. 148-153 ◽  
Author(s):  
S. Tipawan Khlayboonme ◽  
Wicharn Techitdheera ◽  
Warawoot Thowladda

The morphology and optical properties of nanostructured diamond films affected by the two-step deposition process with changing CH4 concentration were investigated. The CH4 concentration was 1% for the first step and 2% for the second step. The films were prepared by chemical vapor deposition in a microwave plasma reactor with a CH4/H2 gas mixture. Nanocrystalline columnar-structured diamond film with lowering of sp2-bonded carbon content was achieved by the two-step deposition process. Unlike that of the single-step process with 1%CH4, the two-step process promoted the morphology to more uniform and smoother film. The two-step process increased the higher grain boundary as well as decreased the sp2-bonded carbon content in the film, as compared with the single-step process with 2%CH4Subscript text.


1995 ◽  
Vol 78 (11) ◽  
pp. 6849-6851 ◽  
Author(s):  
Hee‐Baik Chae ◽  
Yong‐Jin Han ◽  
Dae‐Jin Seong ◽  
Jong‐Chul Kim ◽  
Young‐Joon Baik

Sign in / Sign up

Export Citation Format

Share Document