Model analysis of boundary residual stress and its effect on toughness in thin boundary layered yttria-stabilized tetragonal zirconia polycrystalline ceramics

2000 ◽  
Vol 15 (3) ◽  
pp. 727-732 ◽  
Author(s):  
J. L. Shi ◽  
Z. L. Lu ◽  
J. K. Guo

The average thermal residual stress in a continuous boundary phase in polycrystalline ceramic composites was calculated with a simple thin boundary layer model, and a criterion for the self-cracking of the boundary phase was derived under a certain assumption. From the proposed model, the toughness of the materials can be increased by both tensile and compressive stress at boundaries when the crack propagates transgranularly. The toughness will be increased when the stress at boundary is compressive for intergranular fracture mode. The maximum increase is predicted to be achieved at boundary phase contents below 33%. The experimental results for yttria-stabilized tetragonal zirconia polycrystalline ceramics doped with different kinds of grain-boundary phase is in a qualitative agreement with the prediction by the model, but the toughness increase is largely dependent on the distribution feature of glass phases.

2016 ◽  
Vol 869 ◽  
pp. 46-51
Author(s):  
Daniel Alessander Nono ◽  
Eron Fernandes da Silva ◽  
Maria do Carmo de Andrade Nono ◽  
Francisco Piorino Neto ◽  
Sergio Luiz Mineiro

The fracture toughness is one of the requirements for mechanical properties of materials for use in satellites. The ceramic TZP zirconia (tetragonal zirconia polycrystals) have been investigated for applications in ballistic armor. Due to the chemical inertness and fracture toughness, this material has the potential to act as a screen against impacts of micrometeorites and space debris. The ceramic composites of alumina-zirconia 3Y-TZP (tetragonal zirconia polycrystals doped with 3 mol% ytria ) are the materials with the best benefit / cost for this application. This paper presents and discusses the results obtained from the use of two techniques for determining fracture toughness. The composite alumina - 18.5% of 3Y-TZP zirconia nanoparticles obtained from deflocculated powders have been tested for Vickers and the SEVNB penetration method (Single-Edge-Notch Beam V) to obtain the fracture toughness values (KIC). The KIC values obtained were analyzed due to the lower dispersion of experimental values. The SEVNB method showed better reliability in determining the toughness values in the studied ceramics.


2008 ◽  
Vol 571-572 ◽  
pp. 327-332 ◽  
Author(s):  
Jesus Ruiz-Hervias ◽  
Giovanni Bruno ◽  
Jonas Gurauskis ◽  
A.J. Sanchez-Herencia ◽  
C. Baudin

Residual stress profiles were measured by neutron diffraction in Al2O3/Y-TZP ceramic composites containing 5 and 40 vol.% Y-TZP fabricated by conventional slip casting and by a novel tape casting route. Residual stresses in the zirconia are tensile and increase as its volume fraction decreases. For the alumina matrix, residual stress is compressive and increases with the zirconia volume fraction. In the composite with 5 vol.% zirconia, the processing route does not have an influence on residual stresses. However, in the composite with 40 vol.% zirconia, residual stresses are different in the samples obtained by both processing routes.


2019 ◽  
Vol 15 (3) ◽  
pp. 599-616 ◽  
Author(s):  
Dibakor Boruah ◽  
Xiang Zhang ◽  
Matthew Doré

PurposeThe purpose of this paper is to develop a simple analytical model for predicting the through-thickness distribution of residual stresses in a cold spray (CS) deposit-substrate assembly.Design/methodology/approachLayer-by-layer build-up of residual stresses induced by both the peening dominant and thermal mismatch dominant CS processes, taking into account the force and moment equilibrium requirements. The proposed model has been validated with the neutron diffraction measurements, taken from the published literature for different combinations of deposit-substrate assemblies comprising Cu, Mg, Ti, Al and Al alloys.FindingsThrough a parametric study, the influence of geometrical variables (number of layers, substrate height and individual layer height) on the through-thickness residual stress distribution and magnitude are elucidated. Both the number of deposited layers and substrate height affect residual stress magnitude, whereas the individual layer height has little effect. A good agreement has been achieved between the experimentally measured stress distributions and predictions by the proposed model.Originality/valueThe proposed model provides a more thorough explanation of residual stress development mechanisms by the CS process along with mathematical representation. Comparing to existing analytical and finite element methods, it provides a quicker estimation of the residual stress distribution and magnitude. This paper provides comparisons and contrast of the two different residual stress mechanisms: the peening dominant and the thermal mismatch dominant. The proposed model allows parametric studies of geometric variables, and can potentially contribute to CS process optimisation aiming at residual stress control.


2019 ◽  
Vol 25 (8) ◽  
pp. 413-420 ◽  
Author(s):  
Mohamed Jouili ◽  
Michel Andrieux ◽  
Isabelle Gallet ◽  
Nathalie Prud'Homme ◽  
Vincent Ji

2010 ◽  
Vol 65 ◽  
pp. 11-15
Author(s):  
Ya. Dyatlova ◽  
S.S. Ordanyan ◽  
Andrey Osmakov ◽  
V. Pesin ◽  
V. Rumyantsev

The paper demonstrates the possibility to control the degree of tetragonal zirconia stabilization, microstructure and physical and mechanical behavior of Al2O3 -ZrO2(Y2O3) ceramic composite. Control is exerted via the process variables during deposition synthesis of nanosized composite powders from hydroxide salts, and their subsequent heat treatment and consolidation. Morphology features of nanosized powder systems and microstructures of the consolidated nanostructured materials were characterized by BET surface are measurements, scanning electron microscopy (both standard and HR), and large-angle X-ray diffraction. Correlations are established between microstructure parameters, physical and mechanical behavior of composite ceramics and a degree of stabilization of tetragonal ZrO2.


2018 ◽  
Vol 35 (4) ◽  
pp. 499-511
Author(s):  
H. T. Liu ◽  
M. H. Zhao ◽  
J. W. Zhang

ABSTRACTA modified bi-layer beam model is proposed to study the fracture-dominated scratch process of the brittle material with surface modification layer considering residual stress. The nonlinear analytical solution of the energy release rate is derived considering the graded distribution of the elastic modulus and residual stress. Finite element analysis is also conducted. Both analytical and numerical results show that the graded distribution of the material properties and residual stress plays an important role in the fracture process. Based on the inverse analysis, the proposed model could provide a convenient way to determine the energy release rate of materials possessing a surface modification layer.


2013 ◽  
Vol 709 ◽  
pp. 176-179 ◽  
Author(s):  
Jian Li

we proposed a scheme for simulating the electronic and thermoelectric properties of polycrystalline ceramics. The simulation results show that the ground state electrons are easily confined in the largest grain. In addition, with the increasing average grain size, the Seebeck coefficient decreases while the electrical conductivity increases monotonically. The simulation results agree well with the available experimental results. Therefore, the proposed model is proved to be a promising approach for thermoelectric investigations.


Sign in / Sign up

Export Citation Format

Share Document