Micropipes in Silicon Carbide Crystals: Do all Screw Dislocations have Open Cores?

2000 ◽  
Vol 15 (8) ◽  
pp. 1649-1652 ◽  
Author(s):  
William M. Vetter ◽  
Michael Dudley

Micropipes in a 6H–SiC semiconductor wafer were studied by scanning electron and atomic force microscopy. The screw dislocations intersecting the wafer's surface were located by etch pitting, and their Burgers vectors determined by x-ray topography. The etch pits were eroded into smooth craters by ion beam etching to expose levels of dislocation line from inside the sample's bulk. There a micropipe's diameter is distant from surface relaxation effects. Hollow cores (micropipes) were observed at the base of the craters whose screw dislocations had Burgers vectors of magnitude three multiples of the c-lattice parameter and higher. Screw dislocations with 1c and 2c Burgers vectors had no associated micropipes.

2005 ◽  
Vol 864 ◽  
Author(s):  
Bentao Cui ◽  
P. I. Cohen ◽  
A. M. Dabiran

AbatractThe formation of ion induced nanoscale patterns such as ripple, dots or pores can be described by a linear continuum equation consisting of a surface roughening term due to curvature-dependent sputtering or asymmetric attachment of vacancies, and a surface smoothing term due to thermal or ion-induced diffusion. By studying ion-induced dimple volume change using atomic force microscopy, we show a method to measure the ion-roughening coefficient. Using this method, we found the roughening coefficient í was 45 nm2/sec at 730K for initial ion etchings with 300 eV Argon ions. Cathodoluminescence measurements indicated Ga-vacancy formation during ion bombardment. The activation energy for surface relaxation after ion etching was about 0.12 eV as measured by reflection high energy electron diffraction.


1983 ◽  
Vol 27 ◽  
Author(s):  
J.A. Cairns

ABSTRACTIon beam techniques have found increasing application in recent years to a wide variety of disciplines. It is the purpose of this paper to explore their potential in the field of catalysis, concentrating exclusively on solid heterogeneous catalysts. An initial description of the internal structure and external physical form of some typical catalysts is followed by an assessment of the use of ion beams for the preparation and interrogation of both “real” and model catalysts. These techniques are then compared to some of the modern tools used in current catalysis research. It emerges that ion beams can indeed be used to advantage in certain applications, such as detecting light elements selectively; measuring interaction effects between metals and supports in model systems; highlighting surface relaxation effects in metal single crystals; and even, in special circumstances, in synthesising catalysts.


2004 ◽  
Vol 812 ◽  
Author(s):  
L. Gao ◽  
J. Gstoettner ◽  
R. Emling ◽  
P. Wang ◽  
W. Hansch ◽  
...  

AbstractDry etching of silver for the metallization in microelectronics is investigated. Etching is performed using an electron-cyclotron-resonance reactive-ion-beam-etching system (ECR-RIBE) in an Ar/CF4 or Ar/CF4/O2 mixture. The etch characteristics are strongly affected by ion energy (beam voltage and microwave energy); the O2 concentration in the reactive mixture has only a small effect. An anisotropic, smooth etch profile and clean surface are obtained. Focused ion beam (FIB) and atomic force microscopy (AFM) have been used to study the etched profile and the roughness, respectively.


Author(s):  
M. Spector ◽  
A. C. Brown

Ion beam etching and freeze fracture techniques were utilized in conjunction with scanning electron microscopy to study the ultrastructure of normal and diseased human hair. Topographical differences in the cuticular scale of normal and diseased hair were demonstrated in previous scanning electron microscope studies. In the present study, ion beam etching and freeze fracture techniques were utilized to reveal subsurface ultrastructural features of the cuticle and cortex.Samples of normal and diseased hair including monilethrix, pili torti, pili annulati, and hidrotic ectodermal dysplasia were cut from areas near the base of the hair. In preparation for ion beam etching, untreated hairs were mounted on conducting tape on a conducting silicon substrate. The hairs were ion beam etched by an 18 ky argon ion beam (5μA ion current) from an ETEC ion beam etching device. The ion beam was oriented perpendicular to the substrate. The specimen remained stationary in the beam for exposures of 6 to 8 minutes.


Author(s):  
Hamish L. Fraser

The topic of strain and lattice parameter measurements using CBED is discussed by reference to several examples. In this paper, only one of these examples is referenced because of the limitation of length. In this technique, scattering in the higher order Laue zones is used to determine local lattice parameters. Work (e.g. 1) has concentrated on a model strained-layer superlattice, namely Si/Gex-Si1-x. In bulk samples, the strain is expected to be tetragonal in nature with the unique axis parallel to [100], the growth direction. When CBED patterns are recorded from the alloy epi-layers, the symmetries exhibited by the patterns are not tetragonal, but are in fact distorted from this to lower symmetries. The spatial variation of the distortion close to a strained-layer interface has been assessed. This is most readily noted by consideration of Fig. 1(a-c), which show enlargements of CBED patterns for various locations and compositions of Ge. Thus, Fig. 1(a) was obtained with the electron beam positioned in the center of a 5Ge epilayer and the distortion is consistent with an orthorhombic distortion. When the beam is situated at about 150 nm from the interface, the same part of the CBED pattern is shown in Fig. 1(b); clearly, the symmetry exhibited by the mirror planes in Fig. 1 is broken. Finally, when the electron beam is positioned in the center of a 10Ge epilayer, the CBED pattern yields the result shown in Fig. 1(c). In this case, the break in the mirror symmetry is independent of distance form the heterointerface, as might be expected from the increase in the mismatch between 5 and 10%Ge, i.e. 0.2 to 0.4%, respectively. From computer simulation, Fig.2, the apparent monocline distortion corresponding to the 5Ge epilayer is quantified as a100 = 0.5443 nm, a010 = 0.5429 nm and a001 = 0.5440 nm (all ± 0.0001 nm), and α = β = 90°, γ = 89.96 ± 0.02°. These local symmetry changes are most likely due to surface relaxation phenomena.


1991 ◽  
Vol 223 ◽  
Author(s):  
Richard B. Jackman ◽  
Glenn C. Tyrrell ◽  
Duncan Marshall ◽  
Catherine L. French ◽  
John S. Foord

ABSTRACTThis paper addresses the issue of chlorine adsorption on GaAs(100) with respect to the mechanisms of thermal and ion-enhanced etching. The use of halogenated precursors eg. dichloroethane is also discussed in regard to chemically assisted ion beam etching (CAIBE).


Author(s):  
Liew Kaeng Nan ◽  
Lee Meng Lung

Abstract Conventional FIB ex-situ lift-out is the most common technique for TEM sample preparation. However, the scaling of semiconductor device structures poses great challenge to the method since the critical dimension of device becomes smaller than normal TEM sample thickness. In this paper, a technique combining 30 keV FIB milling and 3 keV ion beam etching is introduced to prepare the TEM specimen. It can be used by existing FIBs that are not equipped with low-energy ion beam. By this method, the overlapping pattern can be eliminated while maintaining good image quality.


Author(s):  
Suran Qin ◽  
Na Zhao ◽  
Ronghui Jiao ◽  
Chunying Zhu ◽  
Jiang Liu ◽  
...  
Keyword(s):  
Ion Beam ◽  

Sign in / Sign up

Export Citation Format

Share Document