Direct Measurement of Ion Beam Induced, Nanoscale Roughening of GaN

2005 ◽  
Vol 864 ◽  
Author(s):  
Bentao Cui ◽  
P. I. Cohen ◽  
A. M. Dabiran

AbatractThe formation of ion induced nanoscale patterns such as ripple, dots or pores can be described by a linear continuum equation consisting of a surface roughening term due to curvature-dependent sputtering or asymmetric attachment of vacancies, and a surface smoothing term due to thermal or ion-induced diffusion. By studying ion-induced dimple volume change using atomic force microscopy, we show a method to measure the ion-roughening coefficient. Using this method, we found the roughening coefficient í was 45 nm2/sec at 730K for initial ion etchings with 300 eV Argon ions. Cathodoluminescence measurements indicated Ga-vacancy formation during ion bombardment. The activation energy for surface relaxation after ion etching was about 0.12 eV as measured by reflection high energy electron diffraction.

2011 ◽  
Vol 1295 ◽  
Author(s):  
Costel Constantin ◽  
Abhijit Chinchore ◽  
Arthur R. Smith

ABSTRACTThe combination of the molecular beam epitaxy growth method with the in-situ reflection high energy electron diffraction measurements currently offers unprecedented control of crystalline growth materials. We present here a stoichiometric study of MnxSc(1-x) [x = 0, 0.03, 0.05, 0.15, 0.25, 0.35, and 0.50] thin films grown on MgO(001) substrates with this growth method. Reflection high energy electron diffraction and atomic force microscopy measurements reveal alloy behavior for all of our samples. In addition, we found that samples Mn0.10Sc0.90 and Mn0.50Sc0.50 display surface self-assembled nanowires with a length/width ratio of ~ 800 – 2000.


1997 ◽  
Vol 70 (8) ◽  
pp. 990-992 ◽  
Author(s):  
Q. Z. Liu ◽  
L. Shen ◽  
K. V. Smith ◽  
C. W. Tu ◽  
E. T. Yu ◽  
...  

2013 ◽  
Vol 24 ◽  
pp. 133-139 ◽  
Author(s):  
Madhavi Thakurdesai ◽  
A. Mahadkar ◽  
Varsha Bhattacharyya

Ion beam irradiation is a unique non-equilibrium technique for phase formation and material modification. Localized rise in temperature and ultra fast (~1012 s) dissipations of impinging energy make it an attractive tool for nanostructure synthesize. Dense electronic excitation induced spatial and temporal confinement of high energy in a narrow dimension leads the system to a highly non-equilibrium state and the system then relaxes dynamically inducing nucleation of nanocrystals along the latent track. In the present investigation, amorphous thin films of TiO2 are irradiated by 100 MeV Ag ion beam. These irradiated thin films are characterized by Atomic Force Microscopy (AFM), Glancing Angle X-ray Diffraction (GAXRD), Transmission Electron Microscopy (TEM) and UV-VIS absorption spectroscopy. AFM and TEM studies indicate formation of circular nanoparticles of size 10±2 nm in a film irradiated at a fluence of 1×1012 ions.cm-2. Nanophase formation is also inferred from the blueshift observed in UV-VIS absorption band edge.


1998 ◽  
Vol 537 ◽  
Author(s):  
S. Wilson ◽  
C. S. Dickens ◽  
J. Griffin ◽  
M. G. Spencer

AbstractA comparison study of the growth of aluminum nitride (AIN) single crystal epitaxy on 6H-SiC and 4H-SiC substrates has been performed. The material has been characterized using atomic force microscopy (AFM) and reflective high energy electron diffraction (RHEED). AIN crystals were deposited on the following 6H-SiC substrates: singular with and without an initial SiC epilayer, and 3.5° off-axis with and without an initial SIC epilayer. AIN crystals were deposited on 8.0° off-axis 4H-SiC with and without initial SIC epilayers. AFM shows that the deposition of AIN on 6H-SiC and 4H-SIC with an initial SiC epilayer displays high quality quasi-two dimensional growth as atomically flat or step flow epitaxy.


1999 ◽  
Vol 571 ◽  
Author(s):  
Søren Jeppesen ◽  
Maria Gerling ◽  
Lars Samuelson ◽  
Mark S. Miller

ABSTRACTWe report on our efforts to selectively place chemical beam epitaxy grown Stranski-Krastanov InAs dots on GaAs patterns. The pattern profiles for placement depends on the growth conditions of a GaAs buffer layer grown on the lithographic patterns. Because we seek to suppress dot formation on (100)-oriented surfaces outside of the features, we investigated the effects buffer layer growth conditions have on dot nucleation using reflected high energy electron diffraction, atomic force microscopy and photo-luminescence. We conclude that buffer conditions favorable for patterns have negligible effect on the dots formed on the (100)- oriented surface, and that selective dot placement can be engineered by As pressure, InAs deposition and buffer growth conditions.


2011 ◽  
Vol 324 ◽  
pp. 85-88
Author(s):  
Salim El Kazzi ◽  
Ludovic Desplanque ◽  
Christophe Coinon ◽  
Yi Wang ◽  
Pierrre Ruterana ◽  
...  

We study the initial growth of 10 monolayers (MLs) of GaSb on a (001) GaP substrate. Transmission electron microscopy and reflection high energy electron diffraction analysis show that an Sb-rich GaP surface promotes the formation of a 90° misfit dislocation array at the epi-substrate interface. Using atomic force microscopy, we investigate the influence of the growth temperature and the growth rate on the formation and the shape of GaSb islands.


Sign in / Sign up

Export Citation Format

Share Document