Enhanced crystallization and phase transformation of amorphous silicon nitride under high pressure

2001 ◽  
Vol 16 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Ya-Li Li ◽  
Yong Liang ◽  
Fen Zheng ◽  
Xian-Feng Ma ◽  
Suo-Jing Cui ◽  
...  

The crystallization and phase transformation of amorphous Si3N4 ceramics under high pressure (1.0–5.0 GPa) between 800 and 1700 °C were investigated. A greatly enhanced crystallization and α–β transformation of the amorphous Si3N4 ceramics were evident under the high pressure, as characterized by that, at 5.0 GPa, the amorphous Si3N4 began to crystallize at a temperature as low as 1000 °C (to transform to a modification). The subsequent a–b transformation occurred completed between 1350 and 1420 °C after only 20 min of pressing at 5.0 GPa. In contrast, under 0.1 MPa N2, the identical amorphous materials were stable up to 1400 °C without detectable crystallization, and only a small amount of a phase was detected at 1500 °C. The crystallization temperature and the a–b transformation temperatures are reduced by 200–350 °C compared to that at normal pressure. The enhanced phase transformations of the amorphous Si3N4 were discussed on the basis of thermodynamic and kinetic consideration of the effects of pressure on nucleation and growth.

2000 ◽  
Vol 15 (4) ◽  
pp. 988-994 ◽  
Author(s):  
Ya-Li Li ◽  
Yong Liang ◽  
Fen Zheng ◽  
Xian-Feng Ma ◽  
Suo-Jing Cui

Nanopowders of amorphous silicon nitride were densified and sintered without additives under ultrahigh pressure (1.0–5.0 GPa) between room temperature and 1600 °C. The powders had a mean diameter of 18 nm and contained ∼5.0 wt% oxygen that came from air-exposure oxidation. Sintering results at different temperatures were characterized in terms of sintering density, hardness, phase structure, and grain size. It was observed that the nanopowders can be pressed to a high density (87%) even at room temperature under the high pressure. Bulk Si3N4 amorphous and crystalline ceramics (relative density: 95–98%) were obtained at temperatures slightly below the onset of crystallization (1000–1100 °C) and above 1420 °C, respectively. Rapid grain growth occurred during the crystallization leading to a grain size (>160 nm) almost 1 order of magnitude greater than the starting particulate diameters. With the rise of sintering temperature, a final density was reached between 1350 and 1420 °C, which seemed to be independent of the pressure applied (1.0–5.0 GPa). The densification temperature observed under the high pressure is lower by 580 °C than that by hot isostatic pressing sintering, suggesting a significantly enhanced low-temperature sintering of the nanopowders under a high external pressure.


2020 ◽  
Vol 6 (39) ◽  
pp. eabc0075
Author(s):  
Naoki Tambo ◽  
Yuxuan Liao ◽  
Chun Zhou ◽  
Elizabeth Michiko Ashley ◽  
Kouhei Takahashi ◽  
...  

Engineering the thermal conductivity of amorphous materials is highly essential for the thermal management of future electronic devices. Here, we demonstrate the impact of ultrafine nanostructuring on the thermal conductivity reduction of amorphous silicon nitride (a-Si3N4) thin films, in which the thermal transport is inherently impeded by the atomic disorders. Ultrafine nanostructuring with feature sizes below 20 nm allows us to fully suppress contribution of the propagating vibrational modes (propagons), leaving only the diffusive vibrational modes (diffusons) to contribute to thermal transport in a-Si3N4. A combination of the phonon-gas kinetics model and the Allen-Feldmann theory reproduced the measured results without any fitting parameters. The thermal conductivity reduction was explained as extremely strong diffusive boundary scattering of both propagons and diffusons. These findings give rise to substantial tunability of thermal conductivity of amorphous materials, which enables us to provide better thermal solutions in microelectronic devices.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Jeffrey L. Braun ◽  
Sean W. King ◽  
Eric R. Hoglund ◽  
Mehrdad Abbasi Gharacheh ◽  
Ethan A. Scott ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 354
Author(s):  
Qianqian Liu ◽  
Xiaoxuan Chen ◽  
Hongliang Li ◽  
Yanqing Guo ◽  
Jie Song ◽  
...  

Luminescent amorphous silicon nitride-containing dense Si nanodots were prepared by using very-high-frequency plasma-enhanced chemical vapor deposition at 250 °C. The influence of thermal annealing on photoluminescence (PL) was studied. Compared with the pristine film, thermal annealing at 1000 °C gave rise to a significant enhancement by more than twofold in terms of PL intensity. The PL featured a nanosecond recombination dynamic. The PL peak position was independent of the excitation wavelength and measured temperatures. By combining the Raman spectra and infrared absorption spectra analyses, the enhanced PL was suggested to be from the increased density of radiative centers related to the Si dangling bonds (K0) and N4+ or N20 as a result of bonding configuration reconstruction.


1989 ◽  
Vol 4 (2) ◽  
pp. 394-398 ◽  
Author(s):  
V. S. Kaushik ◽  
A. K. Datye ◽  
D. L. Kendall ◽  
B. Martinez-Tovar ◽  
D. S. Simons ◽  
...  

Implantation of nitrogen at 150 KeV and a dose of 1 ⊠ 1018/cm2 into (110) silicon results in the formation of an amorphized layer at the mean ion range, and a deeper tail of nitrogen ions. Annealing studies show that the amorphized layer recrystallizes into a continuous polycrystalline Si3N4 layer after annealing for 1 h at 1200 °C. In contrast, the deeper nitrogen fraction forms discrete precipitates (located 1μm below the wafer surface) in less than 1 min at this temperature. The arcal density of these precipitates is 5 ⊠ 107/cm2 compared with a nuclei density of 1.6 ⊠ 105/cm2 in the amorphized layer at comparable annealing times. These data suggest that the nucleation step limits the recrystallization rate of amorphous silicon nitride to form continuous buried nitride layers. The nitrogen located within the damaged crystalline silicon lattice precipitates very rapidly, yielding semicoherent crystallites of β–Si3N4.


Sign in / Sign up

Export Citation Format

Share Document