Oxygen transport during annealing of Pb(Zr,Ti)O3 thin films in O2 gas and its effect on their conductivity

2001 ◽  
Vol 16 (10) ◽  
pp. 3005-3008 ◽  
Author(s):  
F. Ayguavives ◽  
B. Agius ◽  
B. EaKim ◽  
I. Vickridge

Lead zirconate titanate (PZT) thin films were deposited in a reactive argon/oxygen gas mixture by radio-frequency-magnetron sputtering. The use of a metallic target allows us to control the oxygen incorporation in the PZT thin film and also, using oxygen 18 as a tracer, to study the oxygen diffusion in the thin films. Electrical properties and crystallization were optimized with a 90-nm PZT thin film grown on RuO2 electrodes. These PZT films, annealed with a very modest thermal budget (550 °C) show very low leakage current densities (J = 2 × 10−8 A/cm2 at 1 V). In this article we show that a strong correlation exists between the oxygen composition in the PZT film and the leakage current density.

1993 ◽  
Vol 310 ◽  
Author(s):  
In K. Yoo ◽  
Seshu B. Desu ◽  
Jimmy Xing

AbstractMany attempts have been made to reduce degradation properties of Lead Zirconate Titanate (PZT) thin film capacitors. Although each degradation property has been studied extensively for the sake of material improvement, it is desired that they be understood in a unified manner in order to reduce degradation properties simultaneously. This can be achieved if a common source(s) of degradations is identified and controlled. In the past it was noticed that oxygen vacancies play a key role in fatigue, leakage current, and electrical degradation/breakdown of PZT films. It is now known that space charges (oxygen vacancies, mainly) affect ageing, too. Therefore, a quantitative ageing mechanism is proposed based on oxygen vacancy migration under internal field generated by either remanent polarization or spontaneous polarization. Fatigue, leakage current, electrical degradation, and polarization reversal mechanisms are correlated with the ageing mechanism in order to establish guidelines for simultaneous degradation control of PZT thin film capacitors. In addition, the current pitfalls in the ferroelectric test circuit is discussed, which may cause false retention, imprint, and ageing.


1991 ◽  
Vol 243 ◽  
Author(s):  
Vinay Chikarmane ◽  
Jiyoung Kim ◽  
C. Sudhama ◽  
Jack Lee ◽  
Al Tasch ◽  
...  

AbstractThe Pt-Lead Zirconate Titanate (PZT) thin film interface plays a key role in determining the electrical properties and phase transformation kinetics of Pt-PZT-Pt thin film capacitor structures. The results of the electrical and material properties of PZT (65/35) films that vary in thickness between 500 Å to 4000 Å deposited by DC-magnetron sputtering under identical deposition conditions, and subjected to the same post-deposition thermal processing conditions shows that the Pt-PZT interface dominates thin film properties at low thicknesses (≦ 2000 Å). The charge storage density (Qc') and maximum polarization (Pmax) shows an anomalous variation with thickness, showing an initial increase followed by a drastic decrease as the film thickness is scaled down to 500Å. Significant interdiffusion at the PZT film-Pt electrode retards the pyrochlore-to-perovskite phase transformation nucleation and growth rate in PZT films of thickness 2000Å and lower. Gate polarity dependence of the time-tobreakdown and the degradation field is observed for all PZT film thicknesses (including 4000Å). This indicates that the ferroelectric film-electrode interface has an important role to play in determining the electrical reliability properties even in the 4000Å thick PZT film, although Qc' and Pmax are not adversely affected at these thicknesses.


2011 ◽  
Vol 1299 ◽  
Author(s):  
L.M. Sanchez ◽  
D.M. Potrepka ◽  
G.R. Fox ◽  
I. Takeuchi ◽  
R.G. Polcawich

ABSTRACTLeveraging past research activities in orientation control of lead zirconate titanate (PZT) thin films [1,2], this work attempts to optimize those research results using the fabrication equipment at the U.S. Army Research Laboratory so as to achieve a high degree of {001}- texture and improved piezoelectric properties. Initial experiments examined the influence of Ti/Pt and TiO2/Pt thins films used as the base-electrode for chemical solution deposition PZT thin film growth. In all cases, the starting silicon substrates used a 500 nm thermally grown silicon dioxide. The Pt films were sputter deposited onto highly textured titanium dioxide films grown by a thermal oxidation process of a sputtered Ti film [3]. The second objective targeted was to achieve highly {001}-textured PZT using a seed layer of PbTiO3 (PT). A comparative study was performed between Ti/Pt and TiO2/Pt bottom electrodes. The results indicate that the use of a highly oriented TiO2 led to highly {111}-textured Pt, which in turn improved both the PT and PZT orientations. Both PZT (52/48) and (45/55) thin films with and without PT seed layers were deposited and examined via x-ray diffraction methods (XRD) as a function of annealing temperature. As expected, the PT seed layer provides significant improvement in the PZT {001}-texture while suppressing the {111}-texture of the PZT. Improvements in the Lotgering factor (f) were observed upon comparison of the original Ti/Pt/PZT process (f=0.66) with samples using the PT seed layer as a template, Ti/Pt/PT/PZT (f=0.87), and with films deposited onto the improved Pt electrodes, TiO2/Pt/PT/PZT (f=0.96).


2007 ◽  
Vol 336-338 ◽  
pp. 21-23
Author(s):  
Qiu Sun ◽  
Ying Song ◽  
Fu Ping Wang

The Pb(Zr0.52Ti0.48)O3 thin films with 0-2at.%Gd dopants (denoted as PGZT) were prepared on Pt/Ti/SiO2/Si substrates by a sol-gel technique and a rapid thermal annealing process. The structures of PGZT films were characterized and the ferroelectric properties such as P–V loop, C–V and I–V characteristics were investigated. Improved polarization (2Pr = 46.373 μC/cm2) and the low leakage current (J = 1.5×10-9 A/cm2 at the electric field of 400 kV/cm) were obtained in the PZT thin film with 1at.% Gd dopant, which was better than that of the pure PZT thin film (2Pr = 39.099 μC/cm2, J = 4.3×10-8A/cm2). With the Gd contents up to 2at.%, a decreased remanent polarization was found.


2013 ◽  
Vol 135 (1) ◽  
Author(s):  
Qing Guo ◽  
G. Z. Cao ◽  
I. Y. Shen

Lead zirconate titanate (PbZrxTi1-xO3, or PZT) is a piezoelectric material widely used as sensors and actuators. For microactuators, PZT often appears in the form of thin films to maintain proper aspect ratios. One major challenge encountered is accurate measurement of piezoelectric coefficients of PZT thin films. In this paper, we present a simple, low-cost, and effective method to measure piezoelectric coefficient d33 of PZT thin films through use of basic principles in mechanics of vibration. A small impact hammer with a tiny tip acts perpendicularly to the PZT thin-film surface to generate an impulsive force. In the meantime, a load cell at the hammer tip measures the impulsive force and a charge amplifier measures the responding charge of the PZT thin film. Then the piezoelectric coefficient d33 is obtained from the measured force and charge based on piezoelectricity and a finite element modeling. We also conduct a thorough parametric study to understand the sensitivity of this method on various parameters, such as substrate material, boundary conditions, specimen size, specimen thickness, thickness ratio, and PZT thin-film material. Two rounds of experiments are conducted to demonstrate the feasibility and accuracy of this new method. The first experiment is to measure d33 of a PZT disk resonator whose d33 is known. Experimental results show that d33 measured via this method is as accurate as that from the manufacturer's specifications within its tolerance. The second experiment is to measure d33 of PZT thin films deposited on silicon substrates. With the measured d33, we predict the displacement of PZT thin-film membrane microactuators. In the meantime, the actuator displacement is measured via a laser Doppler vibrometer. The predicted and measured displacements agree very well validating the accuracy of this new method.


2004 ◽  
Vol 830 ◽  
Author(s):  
Hiroshi Nakaki ◽  
Hiroshi Uchida ◽  
Shoji Okamoto ◽  
Shintaro Yokoyama ◽  
Hiroshi Funakubo ◽  
...  

ABSTRACTRare-earth-substituted tetragonal lead zirconate titanate thin films were synthesized for improving the ferroelectric property of conventional lead zirconate titanate. Thin films of Pb1.00REx (Zr0.40Ti0.60)1-(3x /4)O3 (x = 0.02, RE = Y, Dy, Er and Yb) were deposited on (111)Pt/Ti/SiO2/(100)Si substrates by a chemical solution deposition (CSD). B-site substitution using rare-earth cations described above enhanced the crystal anisotropy, i.e., ratio of PZT lattice parameters c/a. Remanent polarization (Pr) of PZT film was enhanced by Y3+-, Dy3+- and Er3+-substitution from 20 μC/cm2 up to 26, 25 and 26 μC/cm2 respectively, while ion substitution using Yb3+ degraded the Pr value down to 16 μC/cm2. These films had similar coercive fields (Ec) of around 100 kV/cm. Improving the ferroelectric property of PZT film by rare-earth-substitution would be ascribed to the enhancement of the crystal anisotropy. We concluded that ion substitution using some rare-earth cations, such as Y3+, Dy3+ or Er3+, is one of promising technique for improving the ferroelectric property of PZT film.


2021 ◽  
pp. 106413
Author(s):  
Yuexin Yang ◽  
Zhuohui Xu ◽  
Tian Qiu ◽  
Honglong Ning ◽  
Jinyao Zhong ◽  
...  

2006 ◽  
Vol 933 ◽  
Author(s):  
Sushil Kumar Singh ◽  
Hiroshi Ishiwara

AbstractMn-substituted BiFeO3 (BFO) thin films were formed by chemical solutions deposition on Pt/Ti/SiO2/Si(100) structures. Effects of the Mn-substitution on the structure and ferroelectricity of BFO films were examined. We found that the lattice structure of the film is sensitive to the Mn-substitution and the secondary phase is appears in 50% Mn-substituted BFO films. The leakage current were increased with the Mn-substitution. However, the 5% Mn-substituted BFO film shows low leakage current than undoped BFO films in a high electric field than 0.5 MV/cm. Due to the low leakage current in Mn-doped 3, 5 and 7% BFO films, the saturated P-E hysteresis loops with remanent polarization around 100 μC/cm2 were obtained at RT.


Sign in / Sign up

Export Citation Format

Share Document