Effects of Rare Earth Gd Doping on Ferroelectric Properties of PbZr0.52Ti0.48O3 Thin Films Prepared by Sol–Gel Methods

2007 ◽  
Vol 336-338 ◽  
pp. 21-23
Author(s):  
Qiu Sun ◽  
Ying Song ◽  
Fu Ping Wang

The Pb(Zr0.52Ti0.48)O3 thin films with 0-2at.%Gd dopants (denoted as PGZT) were prepared on Pt/Ti/SiO2/Si substrates by a sol-gel technique and a rapid thermal annealing process. The structures of PGZT films were characterized and the ferroelectric properties such as P–V loop, C–V and I–V characteristics were investigated. Improved polarization (2Pr = 46.373 μC/cm2) and the low leakage current (J = 1.5×10-9 A/cm2 at the electric field of 400 kV/cm) were obtained in the PZT thin film with 1at.% Gd dopant, which was better than that of the pure PZT thin film (2Pr = 39.099 μC/cm2, J = 4.3×10-8A/cm2). With the Gd contents up to 2at.%, a decreased remanent polarization was found.

2021 ◽  
Author(s):  
M.L.V. Mahesh ◽  
Prem Pal ◽  
Bhanu Prasad V.V. ◽  
A.R. James

Abstract Multilayer thin films of (Ba0.50Sr0.50)TiO3 (BST) and Ba(Zr0.15Ti0.85)O3 (BZT) were designed and grown using Pulsed LASER Deposition technology. The periodic (BST/BZT)n thin films were deposited on Pt‹111›/SiO2/Si substrates. X-ray diffraction reveals the presence of a polycrystalline, perovskite structure corresponding to the bilayer thin film stacks. SEM analysis confirmed the multilayer structure without any interdiffusion across layers. It was also found that the dielectric and ferroelectric properties of the thin films are strongly influenced by the periodic hetero-structures. The thin film stacks exhibit significantly higher tunabilities, comparable with multilayer thin films grown on various single crystal substrates such as LaAlO3, MgO and SrTiO3. Possible mechanisms explaining the other observed attributes such as lower dielectric loss resulting in higher Figure of Merit (FoM), low leakage current are discussed. The effect of incorporating a comparatively lower permittivity thin film in the multilayer stacks is presented. The observed properties of such multilayer structured films help in realization of low loss and highly tunable applications.


2012 ◽  
Vol 557-559 ◽  
pp. 1933-1936
Author(s):  
Ning Yan ◽  
Sheng Hong Yang ◽  
Yue Li Zhang

Pure BiFeO3(BFO) and Bi0.9Nd0.1Fe0.925Mn0.075O3(BNFM) thin films were deposited on Pt(111)/Ti/SiO2/Si substrate by sol-gel method. X-ray diffraction analysis showed that all the films were single perovskite structure and a phase transition appeared in Nd–Mn codoped BiFeO3 thin films. Electrical measurements indicated that the ferroelectric properties of BFO thin films were significantly improved by Nd and Mn codoping. BNFM films exhibit a low leakage current and a good P-E hysteresis loop. The remanent polarization (Pr) value of 74μC/cm2has been obtained in BNFM films, while the coercive field (Ec) is 184kV/cm.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 502
Author(s):  
Zhi-Yong Wu ◽  
Cai-Bin Ma

Bismuth ferrite (BiFeO3) has proven to be promising for a wide variety of microelectric and magnetoelectric devices applications. In this work, a dense (Ba0.65Sr0.35)TiO3(BST)/(Bi0.875Nd0.125)FeO3(BNF)/BST trilayered thin film grown on Pt-coated Si (100) substrates was developed by the rf-sputtering. For comparison, single-layered BNF and BST were also prepared on the same substrates, respectively. The results show that the dielectric loses suppression in BST/BNF/BST trilayered thin films at room temperature but has enhanced ferromagnetic and ferroelectric properties. The remnant polarization (Pr) and coercive electronic field (Ec) were 5.51 μC/cm2 and 18.3 kV/cm, and the remnant magnetization (Mr) and coercive magnetic field (Hc) were 10.1 emu/cm3 and 351 Oe, respectively, for the trilayered film. We considered that the bismuth’s volatilization was limited by BST bottom layers making the Bi/Fe in good station, and the action of BST layer in the charge transfer between BNF thin film and electrode led to the quite low leakage current and enhanced multiferroic property. The origin of the mechanism of the highly enhanced dielectric constant and decreased loss tanδ was discussed.


2001 ◽  
Vol 16 (10) ◽  
pp. 3005-3008 ◽  
Author(s):  
F. Ayguavives ◽  
B. Agius ◽  
B. EaKim ◽  
I. Vickridge

Lead zirconate titanate (PZT) thin films were deposited in a reactive argon/oxygen gas mixture by radio-frequency-magnetron sputtering. The use of a metallic target allows us to control the oxygen incorporation in the PZT thin film and also, using oxygen 18 as a tracer, to study the oxygen diffusion in the thin films. Electrical properties and crystallization were optimized with a 90-nm PZT thin film grown on RuO2 electrodes. These PZT films, annealed with a very modest thermal budget (550 °C) show very low leakage current densities (J = 2 × 10−8 A/cm2 at 1 V). In this article we show that a strong correlation exists between the oxygen composition in the PZT film and the leakage current density.


2008 ◽  
Vol 368-372 ◽  
pp. 100-102 ◽  
Author(s):  
Su Hua Fan ◽  
Jing Xu ◽  
Guang Da Hu ◽  
Bo He ◽  
Feng Qing Zhang

Ca1-xSrxBi4Ti4O15 thin films were fabricated by sol-gel method on Pt(100)/Ti/SiO2/Si substrates. Influence of Sr content on the microstructure and ferroelectric properties of Ca1-xSrxBi4Ti4O15 thin films were systematically studied. The results indicate that Ca0.4Sr0.6Bi4Ti4O15 thin film has better ferroelectric properties with remanent polarization (2Pr) of 29.1+C/cm2, coercive field (2Ec) of 220 kV/cm. Furthermore, the film has good fatigue resistance. The better ferroelectric properties of Ca0.4Sr0.6Bi4Ti4O15 thin film originate from the relatively high concentration of a-axis oriented grains.


2007 ◽  
Vol 21 (18n19) ◽  
pp. 3404-3411
Author(s):  
M. C. KAO ◽  
H. Z. CHEN ◽  
S. L. YOUNG ◽  
C. C. LIN ◽  
C. C. YU

LiTaO 3 thin films were deposited on Pt / Ti / SiO 2/ Si substrates by means of a sol-gel spin-coating technology and rapid thermal annealing (RTA). The influence of various annealing treatments on the characteristics of the thin films were studied by varying the single-annealed-layer thickness (50 ~ 200 nm ) and heating temperatures (500 ~ 800° C ) of the samples. Experimental results reveal that the single-annealed-layer strongly influences grain size, dielectricity and ferroelectricity of LiTaO 3 thin films. The grain size of LiTaO 3 thin film decreases slightly with increasing thickness of the single-annealed-layer, and highly c-axis orientated LiTaO 3 films can be obtained for a single-annealed-layer of 50 nm. When the thickness of the single-annealed-layer was increased from 50 to 200 nm, the relative dielectric constant of LiTaO 3 thin film decreased from 65 to 35, but the dielectric loss factor (tanδ) was increased. The LiTaO 3 films with the single-annealed-layer of 50 nm showed excellent ferroelectric properties in terms of a remanent polarization ( P r) of 12.3 μ C /cm2 (Ec ∼ 60 kV/cm), and a low current density of 5.2×l0-8 A /cm2 at 20 kV/cm.


2014 ◽  
Vol 602-603 ◽  
pp. 804-807
Author(s):  
Zhen Kun Xie ◽  
Zhen Xing Yue

High Curie-temperature (Tc) polycrystalline 0.2Bi (Ni1/2Ti1/2)O3-0.8PbTiO3 (0.2BNT-0.8PT) thin films were fabricated on Pt (111)/Ti/SiO2/Si substrates via an aqueous chemical solution deposition (CSD) technique. The thin films exhibited good crystalline quality and dense, uniform microstructures with an average grain size of 55 nm. The dielectric, piezoelectric and ferroelectric properties of the films was investigated. The permittivity peak appeared at 485 °C, which was 100 °C higher than that of Pb (Zr,Ti)O3 thin films. The local effective piezoelectric coefficient d33 was 45 pm/V at 3V. Moreover, a large remnant polarization with 2Pr up to 92 uC/cm2 and a small leakage current of 2.2×10-5 A/cm2 under an electric field of 400 kV/cm were obtained. The magnitude of the measured polarization and the high Curie temperature make the 0.2BNT-0.8PT films promising candidates for application in high-temperature ferroelectric and piezoelectric devices.


2002 ◽  
Vol 718 ◽  
Author(s):  
Ching-Chich Leu ◽  
Chao-Hsin Chien ◽  
Ming-Jui Yang ◽  
Ming-Che Yang ◽  
Tiao-Yuan Huang ◽  
...  

AbstractThe effects of a seeding layer, which was deposited on Pt/TiO2/SiO2/Si substrates using magnetron sputtering, on the characteristics of sol-gel-deposited strontium-bismuth-tantalate (SBT) thin films are investigated. The seeding layer serves as nucleation sites so homogeneous crystalline SBT films of bismuth-layered structure (BLS) with fine grains are successfully obtained by 750°C rapid thermal annealing in O2 ambient. The remanent polarization (2Pr) improves from 12.1 to 18.8 μC/cm2 with the addition of the seeding layer. In addition, the seeding layer also results in a lower nucleation temperature, allowing the use of 700°C annealing for 10 min to grow SBT films that are fully crystallized with BLS phase and shows good ferroelectric properties. Finally, crystallinity and microstructures of SBT films are found to be strongly dependent on the thickness of the seeding layer. Optimum Ta-seeded SBT thin film crystallized at 700°C for 10min depicts a higher 2Pr value (12.9 μC/cm2 (@5V) than that of the un-seeded films crystallized at 750°C for 1min.


2018 ◽  
Vol 25 (07) ◽  
pp. 1950014
Author(s):  
N. LI

K0.5Na0.5Nbo3 wet films were spin-coated on Pt/Ti/SiO2/Si substrates by chemical solution deposition method. The microwave irradiation was introduced as the annealing method. The microstructure and electric properties of KNN thin films were tested and analyzed. It was found that the KNN thin film can be well crystallized by microwave irradiation at the temperature as low as 425∘C. The KNN thin film annealed at 425∘C gains the uniform microstructure, grain refinement, better electric properties and low leakage current density.


1999 ◽  
Vol 14 (11) ◽  
pp. 4395-4401 ◽  
Author(s):  
Seung-Hyun Kim ◽  
D. J. Kim ◽  
K. M. Lee ◽  
M. Park ◽  
A. I. Kingon ◽  
...  

Ferroelectric SrBi2Ta2O9 (SBT) thin films on Pt/ZrO2/SiO2/Si were successfully prepared by using an alkanolamine-modified chemical solution deposition method. It was observed that alkanolamine provided stability to the SBT solution by retarding the hydrolysis and condensation rates. The crystallinity and the microstructure of the SBT thin films improved with increasing annealing temperature and were strongly correlated with the ferroelectric properties of the SBT thin films. The films annealed at 800 °C exhibited low leakage current density, low voltage saturation, high remanent polarization, and good fatigue characteristics at least up to 1010 switching cycles, indicating favorable behavior for memory applications.


Sign in / Sign up

Export Citation Format

Share Document