Use of combined elastic modulus in the analysis of depth-sensing indentation data

2001 ◽  
Vol 16 (11) ◽  
pp. 3050-3052 ◽  
Author(s):  
A. C. Fischer-Cripps

It is shown that the substitution of reduced modulus for specimen modulus in the analysis equations for nanoindentation test data is valid. The methods of analysis use the slope of the unloading force–depth response which is assumed to be elastic. Because of this utilization of the slope or unloading stiffness, it makes no difference whether or not the deflection of the indenter is accommodated explicitly or transferred to that occurring within the specimen by artificially reducing the specimen modulus from its true value to lower value, the reduced modulus.

2003 ◽  
Vol 18 (5) ◽  
pp. 1043-1045 ◽  
Author(s):  
A. C. Fischer-Cripps

Conventional methods of analysis for depth-sensing indentation test data use the slope of the elastic unloading portion of the load–displacement response in conjunction with the elastic equations of contact for a rigid cone. It is common practice to incorporate the combined modulus of the indenter and specimen in these equations although the validity of this practice never appears to have been verified. This work demonstrates the validity of using the combined elastic modulus in depth-sensing indentation testing in conjunction with the elastic equations of contact for a conical indenter.


2005 ◽  
Vol 20 (10) ◽  
pp. 2660-2669 ◽  
Author(s):  
J. Menčík ◽  
G. Rauchs ◽  
J. Bardon ◽  
A. Riche

When determining elastic modulus and hardness of viscoelastic-plastic materials by depth-sensing indentation, one must respect their specific response. In the monotonic load-unload testing mode, the unloading should be preceded by a dwell mitigating the influence of the delayed deforming. The continuous stiffness measurement (CSM) mode, with a small harmonic signal added to the basic monotonic load, enables continuous measurement of harmonic contact stiffness and mechanical properties as a function of depth. However, the contact depth and area in this mode actually depend on the slow (monotonic) component of the loading and should be determined not from the harmonic contact stiffness but from the unloading stiffness; otherwise, the calculated elastic modulus and mean contact pressure will be incorrect. This paper provides the formulae for these calculations, defines special characteristics—such as apparent dynamic hardness and the index of sensitivity to harmonic loading—and shows how to improve results by smoothing the harmonic stiffness curve. The proposed methods are illustrated through nanoindentation tests of polymethyl methacrylate.


Author(s):  
Hasan M. Faisal ◽  
Zafrul Hakim Khan ◽  
Rafiqul Tarefder

Traditionally, mechanical properties of asphalt concrete (AC) is evaluated through macro-scale testing. However, when aggregates are mixed with asphalt binder, it creates a thin film of 20μm to 40μm around the aggregate particles and the primary strength of AC is derived from the interaction between the binder and aggregates. Therefore, to understand the behavior of asphalt concrete it is necessary to study the binder properties in a nanoscale. Nanoindentation test has been adopted to examine the thin film material property. In a nanoindentation test, a loaded nanoindenter is used to indent the sample surface and measure the indenter displacement as a function of load. To this day, most researchers have used the Oliver-Pharr method to analyze the indentation test data and obtain Elastic modulus (E) and hardness (H) of the material. Generally, in a nanoindentation test, there is a loading and unloading phase. In an elasto-plastic material, loading phase has elastic and plastic response and unloading phase has only elastic response. In Oliver-Pharr method, elastic modulus is obtained through the slope of the unloading curve. Therefore, Oliver-Pharr method mostly applicable for the elasto-plastic metals because it does not incorporate any viscous effect. However, in case of visco-elastic material like asphalt, during the unloading phase, the slope of the unloading curve becomes negative due to the viscous flow. Therefore, using Oliver-Pharr (OP) method in this circumstances will yield an inaccurate value of modulus of elasticity. In the current study, the test data was modeled and analyzed using a well-established spring-dashpot-rigid (SDR) model for viscoelastic material to determine the elastic, plastic and viscous properties. The model assumes the indenter displacement is a function of a quadratic spring, a quadratic dashpot and a plastic rigid body. The loading phase of the nanoindentation test has three contributing parameters: elasticity (E), indentation viscosity (η) and hardness (H). During creep, only contributing parameter is indentation viscosity (η) and while unloading the contributing factors are found to be E and η. Nonlinear least square curve fitting technique was employed to model the nanoindentation test data to the SDR model to find out the contributing parameters E, η and H. In addition, the extended dwell time on the asphalt binder samples produced positive load displacement curves, which were further analyzed with Oliver-Pharr method. Comparison between two models results show traditional Oliver-Pharr model predicts the material properties 5 to 10 times lower than SDR model, as Oliver-Pharr does not consider the viscous behavior in the material.


2001 ◽  
Vol 16 (6) ◽  
pp. 1579-1584 ◽  
Author(s):  
A. C. Fischer-Cripps

The underlying theory behind the extraction of elastic modulus and hardness from the unloading load–displacement data obtained with a spherical indenter was explored in detail. A formal treatment of the effect of indenter elasticity was given, and the validity of the use of the reduced or combined modulus in analytical treatments was verified. The “Oliver and Pharr” method and the “Field and Swain” methods of analyses were compared in detail and shown to be equivalent.


2000 ◽  
Vol 649 ◽  
Author(s):  
G. Feng ◽  
A.H.W. Ngan

ABSTRACTDuring the unloading segment of nanoindentation, time dependent displacement (TDD) accompanies elastic deformation. Consequently the modulus calculated by the Oliver-Pharr scheme can be overestimated. In this paper we present evidences for the influence of the measured modulus by TDD. A modification method is also presented to correct for the effects of TDD by extrapolating the TDD law in the holding process to the beginning of the unloading process. Using this method, the appropriate holding time and unloading rate can be estimated for nanoindentation test to minimise the effects of TDD. The elastic moduli of three materials computed by the modification method are compared with the results without considering the TDD effects.


2001 ◽  
Vol 16 (6) ◽  
pp. 1660-1667 ◽  
Author(s):  
L. Riester ◽  
T. J. Bell ◽  
A. C. Fischer-Cripps

The present work shows how data obtained in a depth-sensing indentation test using a Knoop indenter may be analyzed to provide elastic modulus and hardness of the specimen material. The method takes into account the elastic recovery along the direction of the short axis of the residual impression as the indenter is removed. If elastic recovery is not accounted for, the elastic modulus and hardness are overestimated by an amount that depends on the ratio of E/H of the specimen material. The new method of analysis expresses the elastic recovery of the short diagonal of the residual impression into an equivalent face angle for one side of the Knoop indenter. Conventional methods of analysis using this corrected angle provide results for modulus and hardness that are consistent with those obtained with other types of indenters.


2016 ◽  
Vol 699 ◽  
pp. 37-42 ◽  
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Reznicek

Radiation crosslinking of polyamidu 6 (PA 6) is a well-recognized modification of improving basic material characteristics. Radiation, which penetrated through specimens and reacted with the cross-linking agent, gradually formed cross-linking (3D net), first in the surface layer and then in the total volume, which resulted in considerable changes in specimen behaviour. This research paper deals with the possible utilization of irradiated PA6. The material already contained a special cross-linking agent TAIC (5 volume %), which should enable subsequent cross-linking by ionizing β – radiation (15, 30 and 45 kGy). The effect of the irradiation on mechanical behavior of the tested PA 6 was investigated. Material properties created by β – radiation are measured by nanoindentation test using the DSI method (Depth Sensing Indentation). Hardness increased with increasing dose of irradiation at everything samples; however results of nanoindentation test shows increasing in nanomechanical properties of surface layer. The highest values of nanomechanical properties were reached radiation dose of 45 kGy, when the nanomechanical values increased by about 95%. These results indicate advantage cross-linking of the improved mechanical properties.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Man Lei ◽  
Fa-ning Dang ◽  
Haibin Xue ◽  
Mingming He

In order to study the mechanical properties of granite at the micro- and nanoscale, the load-displacement curve, residual indentation information, and component information of the quartz, feldspar, and mica in granite were obtained using a nanoindentation test, a scanning electron microscope (SEM), and X-ray diffraction (XRD). The elastic modulus and the hardness of each component of the granite were obtained through statistical analysis. Treating rock as a composite material, the relation between the macro- and microscopic mechanical properties of rock was established through the theory of micromechanical homogenization. The transition from micromechanical parameters to macromechanical parameters was realized. The equivalent elastic modulus and Poisson’s ratio of the granite were obtained by the Self-consistent method, the Dilute method, and the Mori-Tanaka method. Compared with the elastic modulus and the Poisson ratio of granites measured by a uniaxial compression test and the available data, the applicability of the three methods were analyzed. The results show that the elastic modulus and hardness of the quartz in the granite is the largest, the feldspar is the second, the mica is the smallest. The main mineral contents in granite were analyzed using the semiquantitative method by XRD and the rock slice identification test. The elastic modulus and the Poisson ratio of granite calculated by three linear homogenization methods are consistent with those of the uniaxial compression test. After comparing the calculation results of the three methods, it is found that the Mori-Tanaka method is more suitable for studying the mechanical properties of rock materials. This method has an important theoretical significance and practical value for studying the quantitative relationship between macro- and micromechanical indexes of brittle materials. The research results provide a new method and an important reference for studying the macro-, micro-, and nanomechanical properties of rock.


2001 ◽  
Vol 16 (7) ◽  
pp. 2149-2157 ◽  
Author(s):  
A. C. Fischer-Cripps

The present work is concerned with the methods of simulation of data obtained from depth-sensing submicron indentation testing. Details of analysis methods for both spherical and Berkovich indenters using multiple or single unload points are presented followed by a detailed treatment of a method for simulating an experimental load–displacement response where the material properties such as elastic modulus and hardness are given as inputs. A comparison between simulated and experimental data is given.


Sign in / Sign up

Export Citation Format

Share Document