Structure and microwave dielectric properties of (Zn1−xNix)TiO3 ceramics

2003 ◽  
Vol 18 (5) ◽  
pp. 1067-1072 ◽  
Author(s):  
Hyo Tae Kim ◽  
Joon-Cheol Hwang ◽  
Joong-Hee Nam ◽  
Byung Hyun Choi ◽  
Michael T. Lanagan

Dielectric ceramics in the system (Zn1−xNix)TiO3, x = 0 to 1 were synthesized by the solid-state reaction route. The phase distribution, microstructure, and dielectric properties were characterized using powder x-ray diffraction analysis, electron microscopy, and microwave measurement techniques. Three phase composition regions were identified in the specimens sintered at 1150 °C: [spinel + rutile] at 0 ≤ x ≤ 0.5, [spinel + ilmenite + rutile] at 0.5 < x ≤ 0.8, and [ilmenite] phase at 0.8 < x ≤ 1. For the 0 ≤ x ≤ 0.5 region, the amount of Ti-rich precipitates incorporated into the spinel phase decreased with the Ni content at 0 ≤ x ≤ 0.5, with a concomitant increase of the rutile phase. The microwave dielectric properties depended on the phase composition and volume according to the three typical phase regions, where the relative amount of rutile to the spinel or ilmenite determined the dielectric properties. The dielectric constant as a function of Ni addition was modeled with a Maxwell mixing rule. An optimum phase distribution was determined in this system with dielectric constant of 22, a Q × f of 60,000, and a low temperature coefficient of the resonant frequency.

2010 ◽  
Vol 434-435 ◽  
pp. 224-227
Author(s):  
Xu Ping Lin ◽  
Jing Tao Ma ◽  
Bao Qing Zhang ◽  
Ji Zhou

The influence of CuO-V2O5-Bi2O3 addition on the sintering behavior, phase composition, microstructure and microwave dielectric properties of Zn3Nb2O8 ceramics were investigated. The co- doping of CuO, V2O5 and Bi2O3 can significantly lower the sintering temperature of Zn3Nb2O8 ceramics from 1150°C to 900°C. The Zn3Nb2O8-0.5wt% CuO-0.5wt% V2O5-2.0wt% Bi2O3 ceramic sintered at 900°C showed a relative density of 97.1%, a dielectric constant (εr) of 18.2, and a quality factor (Q×f) of 36781 GHz. The dielectric properties in this system exhibited a significant dependence on the relative density, content of additives and sintering temperature. The relative density and dielectric constant (εr) of Zn3Nb2O8 ceramics increased with increasing CuO-V2O5-Bi2O3 additions. And also the relative density and dielectric constant of Zn3Nb2O8 ceramics increased by the augment of the sintering temperature.


2011 ◽  
Vol 326 ◽  
pp. 127-130
Author(s):  
Xian Li Huang ◽  
Fu Ping Wang ◽  
Ying Song

In the present work, the microstructure and microwave dielectric properties of BaTi4O9 ceramics derived from a sol-gel precursor were presented. Density measuring results demonstrated that the largest densities of ceramic sample about 96.7% could be reached by virtue of a cool iso-static press and a sintering process at at 1300 °C for 6 hours. The dielectric constant (εr), quality factor (Q×f) and the temperature coefficients (τf) of the BaTi4O9 ceramic samples were 36.65, 28000 GHz, +20.2 ppm/°C, respectively. XRD, SEM and XPS were used to characterize the microstructure of the ceramics samples. Substantial Ti3+ was proposed to be the cause of dielectric loss.


2018 ◽  
Vol 750 ◽  
pp. 996-1002 ◽  
Author(s):  
Xiao-Qiang Song ◽  
Kang Du ◽  
Xian-Zhe Zhang ◽  
Jie Li ◽  
Wen-Zhong Lu ◽  
...  

2015 ◽  
Vol 26 (8) ◽  
pp. 5892-5895 ◽  
Author(s):  
Liang Fang ◽  
Zhenhai Wei ◽  
Huanhuan Guo ◽  
Yihua Sun ◽  
Ying Tang ◽  
...  

1999 ◽  
Vol 14 (9) ◽  
pp. 3567-3570 ◽  
Author(s):  
Ji-Won Choi ◽  
Chong-Yun Kang ◽  
Seok-Jin Yoon ◽  
Hyun-Jai Kim ◽  
Hyung-Jin Jung ◽  
...  

The microwave dielectric properties of Ca[(Li1/3Nb2/3)1−xMx]O3−δ (M = Sn, Ti, 0 ≤ x ≤ 0.5) ceramics were investigated. In general, the ceramics prepared were multiphase materials. However, single-phase specimens having orthorhombic perovskite structure similar to CaTiO3 could be obtained in the vicinity of Sn = 0.2 to 0.3, and Ti = 0.2. As Sn concentration increased, the dielectric constant (εr) decreased and the quality factor (Q) significantly increased within the limited Sn concentration. As Ti concentration increased, the dielectric constant (εr) increased, the quality factor (Q) decreased, and the temperature coefficient of resonant frequency (τf) changed from a negative to positive value. The temperature coefficient of resonant frequency of 0 ppm/°C was realized at Ti = 0.2. The Q · fo value and εr for this composition were found to be 26100 GHz and 38.6, respectively.


1998 ◽  
Vol 13 (10) ◽  
pp. 2945-2949 ◽  
Author(s):  
Whan Choi ◽  
Kyung-Yong Kim ◽  
Myung-Rip Moon ◽  
Kyoo-Sik Bae

Effects of Nd substitution with Bi on the microwave dielectric properties of BiNbO4 were studied. Bi1−xNdxNbO4 ceramics sintered at 920–980 °C consisted of orthorhombic and triclinic phases. The amount of triclinic phase increased with the increase in the Nd content, x, and sintering temperature. The apparent density and the dielectric constant decreased with the Nd content, but increased with sintering temperature, reached the peak values at 960 °C and then rapidly decreased. The Q × f0 value was between 11,000 and 13,000 GHz over all sintering temperatures for x < 0.05, but for x ≥ 0.05 it reached the peak value at 950 °C and then rapidly decreased. The temperature coefficient of resonance frequency increased in the positive direction with the Nd content and showed the minimum value of −1.82 ppm/°C for x = 0.025 sintered at 940 °C. However, it rapidly increased in the negative direction for sintering temperature over 960 °C.


2006 ◽  
Vol 45 ◽  
pp. 2332-2336
Author(s):  
Ki Hyun Yoon ◽  
Ji Won Choi

The microwave dielectric properties of (300-X) nm MgTiO3/(X) nm CaTiO3 thin films have been investigated with correlation between the interface and stress induced by dielectric layers with heattreatment. As the thickness (X) of CaTiO3 film increased, the dielectric constant increased and the temperature coefficient of the dielectric constant changed from the positive to the negative values by the dielectric mixing rule. The dielectric loss of (300-X) nm MgTiO3/(X) nm CaTiO3 thin films increased with an increase of the thickness (X) of CaTiO3 film because of higher thermal stress induced by the higher thermal expansion coefficient of CaTiO3 than that of MgTiO3.


Sign in / Sign up

Export Citation Format

Share Document