scholarly journals Targeted Characterization of the Chemical Composition of JUUL Systems Aerosol and Comparison with 3R4F Reference Cigarettes and IQOS Heat Sticks

Separations ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 168
Author(s):  
Xin Chen ◽  
Patrick C. Bailey ◽  
Clarissa Yang ◽  
Bryant Hiraki ◽  
Michael J. Oldham ◽  
...  

Aerosol constituent yields have been reported from a wide range of electronic nicotine delivery systems. No comprehensive study has been published on the aerosol constituents generated from the JUUL system. Targeted analyses of 53 aerosol constituents from the four JUUL products currently on the US market (Virginia Tobacco and Menthol flavored e-liquids in both 5.0% and 3.0% nicotine concentration by weight) was performed using non-intense and intense puffing regimens. All measurements were conducted by an ISO 17025 accredited contract research organization. JUUL product aerosol constituents were compared to published values for the 3R4F research cigarette and IQOS Regular and Menthol heated tobacco products. Across the four JUUL products and two puffing regimes, only 10/53 analytes were quantifiable, including only two carbonyls (known propylene glycol or glycerol degradants). The remaining analytes were primary ingredients, nicotine degradants and water. Average analyte reductions (excluding primary ingredients and water) for all four JUUL system aerosols tested were greater than 98% lower than 3R4F mainstream smoke, and greater than 88% lower than IQOS aerosol. In summary, chemical characterization and evaluation of JUUL product aerosols demonstrates a significant reduction in toxicants when compared to mainstream cigarette smoke from 3R4F reference cigarettes or aerosols from IQOS-heated tobacco products.

Author(s):  
Nguyen Hong Nam ◽  
Le Gia Thanh Truc ◽  
Khuong Duy Anh ◽  
Laurent Van De Steene

Agricultural and forest residues are potential sources of renewable energy in various countries. However, the difference in characteristics of biomass resources presents challenges for energy conversion processes which often require feedstocks that are physically and chemically consistent. This study presented a complete and comprehensive database of characteristics of a wide range of agricultural and forest residues. Moisture, bulk density, calorific value, proximate and elemental compositions, as well as cellulose, hemicellulose, and lignin compositions of a wide range of biomass residues were analyzed. The major impacts of the variability in biomass compositions to biochemical and thermochemical processes were also discussed.


2003 ◽  
Vol 18 (10) ◽  
pp. 2522-2527 ◽  
Author(s):  
E. D. Specht ◽  
A. Rar ◽  
G. M. Pharr ◽  
E. P. George ◽  
P. Zschack ◽  
...  

A technique based on synchrotron radiation was developed that allows for rapid structural and chemical characterization of ternary alloys over a wide range of composition. The technique was applied to isothermal sections of the Cr–Fe–Ni system grown on Al2O3(0001) sapphire substrates by sequential deposition of layers of graded.thickness followed by annealing to interdiffuse the elements. A film spanning the Cr–Fe–Ni ternary system was measured in 4 h at a resolution of 2 at.% by rastering the sample under a focused beam of synchrotron radiation while simultaneously measuring the diffraction pattern with a charge-coupled device detector to determine crystallographic phases, texture, and lattice parameters and also measuring the x-ray fluorescence with an energy-dispersive detector to determine elemental composition. Maps of phase composition and lattice parameter as a function of composition for several annealing treatments were found to be consistent with equilibrium values. The technique will be useful in combinatorial materials design.


2013 ◽  
Vol 57 ◽  
pp. 380-386 ◽  
Author(s):  
Tameka S. Lawler ◽  
Stephen B. Stanfill ◽  
Liqin Zhang ◽  
David L. Ashley ◽  
Clifford H. Watson

1994 ◽  
Vol 72 (3) ◽  
pp. 928-935 ◽  
Author(s):  
Paul G. Mezey

A density domain (DD) is the formal body enclosed by a molecular isodensity contour (MIDCO) surface. Individual nuclear neighborhoods and various formal molecular fragments can be regarded as fuzzy moieties of electron densities, dominated by one or several nuclei. Such a fuzzy fragment involves a whole range of density values, hence it cannot be described by a single MIDCO, but it can be represented by a sequence of density domains. Within the chemically important range of density values, there are only a finite number of topologically different bodies of density domains. In the Density Domain Approach, chemical bonding is described by the interfacing and mutual interpenetration of local fuzzy charge density clouds. The bonding between fragments of a molecule is characterized by a finite sequence of density domains within a wide range of density values and by the correponding sequence of topological patterns of the mutual interpenetration of these fragments. In earlier works, the DD approach was advocated as an alternative to the conventional "skeletal model" of chemical bonding. The classically motivated line diagrams as representatives of bonding are replaced by the pattern of interpenetration of fuzzy fragment bodies at various density thresholds. In this study, novel DD relations are described, suitable for a quantum chemical characterization of functional groups, the local shape properties of such groups, and their contributions to global molecular shape.


Author(s):  
H. Davis ◽  
W. George

AbstractA rational definition for characterizing the capacity of a cigarette filter to selectively modify the chemical composition of mainstream smoke is presented. The definition is related to the concept of separation factor as defined in chemical engineering and applied in the description of various unit processes. A number of numerical values for a wide range of cigarette filters currently found in the world market place are presented. The relative independence of the selectivity as defined in this paper upon tobacco types is demonstrated. Using a fixed filter construction in terms of amount and type of cellulose acetate fiber and plasticizer content, selectivity values are presented as a function of cigarette length and relative proportion of the cigarette which is allotted to the filter. Further, it is shown that selectivity appears to increase with length for given filter construction parameters. A limited amount of data regarding selectivity for weak acid components of mainstream smoke and certain gas phase components is presented as a characterization of dual filters currently on the US market


2015 ◽  
Vol 12 (2) ◽  
pp. 2527-2559 ◽  
Author(s):  
S. H. Alemohammad ◽  
K. A. McColl ◽  
A. G. Konings ◽  
D. Entekhabi ◽  
A. Stoffelen

Abstract. Validation of precipitation estimates from various products is a challenging problem, since the true precipitation is unknown. However, with the increased availability of precipitation estimates from a wide range of instruments (satellite, ground-based radar, and gauge), it is now possible to apply the Triple Collocation (TC) technique to characterize the uncertainties in each of the products. Classical TC takes advantage of three collocated data products of the same variable and estimates the mean squared error of each, without requiring knowledge of the truth. In this study, triplets among NEXRAD-IV, TRMM 3B42, GPCP and GPI products are used to quantify the associated spatial error characteristics across a central part of the continental US. This is the first study of its kind to explore precipitation estimation errors using TC across the United States (US). A multiplicative (logarithmic) error model is incorporated in the original TC formulation to relate the precipitation estimates to the unknown truth. For precipitation application, this is more realistic than the additive error model used in the original TC derivations, which is generally appropriate for existing applications such as in the case of wind vector components and soil moisture comparisons. This study provides error estimates of the precipitation products that can be incorporated into hydrological and meteorological models, especially those used in data assimilation. Physical interpretations of the error fields (related to topography, climate, etc) are explored. The methodology presented in this study could be used to quantify the uncertainties associated with precipitation estimates from each of the constellation of GPM satellites. Such quantification is prerequisite to optimally merging these estimates.


Author(s):  
Fatma Guezguez ◽  
Sonia Dridi-Dhaouadi ◽  
Mohamed Abdelwaheb ◽  
Ichraf Anane ◽  
Slaheddine Rekik ◽  
...  

2008 ◽  
Vol 2008 (1) ◽  
pp. 407-412 ◽  
Author(s):  
Hans V. Jensen ◽  
Jørn H. S. Andersen ◽  
Per S. Daling ◽  
Elisabeth Nøst

ABSTRACT Introducing regular aerial surveillance in 1981 and near-real time radar satellite detection services in 1992, Norway has obtained a substantial experience in multi sensor oil spill remote sensing. Since 2001 NOFO has been a driving force in the development and utilization of ship-based sensors for short to medium range oil spill detection, supplementing airborne and satellite remote sensing. During the NOFO Oil On Water Exercise in 2006 two satellites, four aircraft, one helicopter and two ships carrying wide range of sensors provided a unique opportunity to assess and compare remote sensing field data synchronized with ground-truth sampling from three sampling MOB-boats. The sampling boats were equipped for doing oil slick thickness measurements and physical-chemical characterization of the surface oil properties. A new vessel-based dispersant application system was field tested executing dispersant treatment of two oil slicks while supported by live infrared video transmitted to the vessel from helicopter. The success of this experiment was documented by extensive monitoring and characterization of the surface oil and the dispersed oil plume during and after the dispersant treatment. This guiding technique, in using aerial forward looking IR-video live transmission from helicopter and remote sensing aircraft, has been practiced later during a recent accidental oil spill on the Norwegian continental shelf. To utilize multiple remote sensors operationally from a response vessel, it is necessary to compare signatures from different sensors in near real time. This paper describes core elements of the remote sensing and ground-truth monitoring during oil on water exercises in recent years, lessons learned and how NOFO will continue developing remote sensing operations related to oil spill combating in reduced visibility and light conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hakima Talouizte ◽  
Mohammed Merzouki ◽  
Mohammed Benlemlih ◽  
Mohammed Bendriss Amraoui

Textile industry is one of the most polluting industries in the world. It has a high importance in terms of its environment impact, since it consumes a considerably large amount of water and produces highly polluted discharge water. In this work, characterization of toxic organic compounds is proposed. Based on gas chromatography coupled to mass spectrometry (GC/MS) screening analysis, organic micropollutant diversity of textile effluents from a local textile processing factory was investigated. In the present work, physicochemical characterization of the studied textile effluents showed considerably high values of principal pollution parameters above the prescribed discharge water limits. Heavy metals like zinc (Zn), copper (Cu), iron (Fe), nickel (Ni), cadmium (Cd), chromium (Cr), and lead (Pb) were found to be present within the permissible limits. The results of GC/MS revealed the presence of various organic compounds belonging to a wide range of chemical classes. Main groups of chemical compounds detected in these effluents were aromatic carboxylic acids, alkanes, aromatic amines, phthalates, aliphatic carboxylic acids, and linear aliphatic alcohols. The results of this study allowed significant contributions to the chemical characterization of textile industry contaminants and identification of indicators that can be considered an important tool for assessment of the potential impact of textile activities to the contamination of aquatic environment and health hazard.


Clay Minerals ◽  
2019 ◽  
Vol 54 (3) ◽  
pp. 245-254
Author(s):  
Mathilde Poirier ◽  
Jean-Eudes Boulingui ◽  
François Martin ◽  
Michel Mbina Mounguengui ◽  
Charles Nkoumbou ◽  
...  

AbstractThis research aims to characterize the mineralogical and crystal-chemical purity of two samples of natural talc (BTT6, BTT7) from the occurrence ‘Ecole1’ in the deposit of Minzanzala, southwest Gabon. X-ray diffraction and modal-composition calculations demonstrated the presence of quartz and Al–Fe-bearing phases (kaolinite and/or chlorite and/or Al–Fe oxyhydroxides) as accessory minerals in both ores. In contrast, the chemical and spectroscopic characterization of the talc component revealed remarkable chemical purity expressed by very low Fe contents. According to these results, the talc of Minzanzala might be used as a filler in a wide range of industrial applications, such as in cosmetics, paints, polymers or ceramics.


Sign in / Sign up

Export Citation Format

Share Document