Multivariable study on homoepitaxial diamond growth using isotopically enriched carbon-13 gas mixtures

2009 ◽  
Vol 24 (2) ◽  
pp. 493-498 ◽  
Author(s):  
Gopi K. Samudrala ◽  
Yogesh K. Vohra

We report our observations on the homoepitaxial diamond growth by microwave plasma chemical vapor deposition (MPCVD) experiments on Type Ib diamond substrates conducted by varying three independent variables. In a feed gas mixture of H2, N2, O2, and 13CH4, the amount of nitrogen was varied in the range of 0 to 4000 ppm, the amount of methane was varied from 2% CH4/H2 to 6% CH4/H2, and the substrate temperature was varied in the range of 850 to 1200 °C. We used isotopically enriched carbon-13 methane gas as the source of carbon in the plasma to clearly distinguish the grown diamond layer from the underlying substrate using Raman spectroscopy. The x-ray rocking curve measurements confirmed the homoepitaxial nature of the deposited layers with a slight increase in the full width at half-maximum for sample grown with the highest nitrogen content in the plasma. Optical and atomic force microscopy revealed dramatic changes in surface morphology with variation in each parameter. The nitrogen incorporation in carbon-13 diamond layers was monitored through photoluminescence spectroscopy of nitrogen–vacancy complexes. A twentyfold increase in diamond growth rate was clearly achieved in this multivariable study.

1993 ◽  
Vol 317 ◽  
Author(s):  
M.M. Waitew ◽  
S. Ismat Shah

ABSTRACTDiamond films were deposited in a microwave plasma chemical vapor deposition (MPCVD) system on Ta substrates using a mixture of hydrogen and methane gases. The films were grown for varying lengths of time to provide samples with no diamond growth to a continuous diamond film. These films were analyzed using X-ray photoelectron spectroscopy (XPS) in order to understand the time dependent interactions between the substrate and the incoming carbon flux. Photoelectron peaks in the Ta 4f, C Is and Ols regions have been analyzed. In the initial stages of growth, a layer of carbide forms on the substrate. As the substrate becomes supersaturated with carbon, graphite starts to form on the surface. A diamond peak begins to appear after about 30 Minutes of deposition.


CrystEngComm ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 2138-2146 ◽  
Author(s):  
G. Shu ◽  
V. G. Ralchenko ◽  
A. P. Bolshakov ◽  
E. V. Zavedeev ◽  
A. A. Khomich ◽  
...  

Homoepitaxial diamond growth may proceed with stops and resumptions to produce thick crystals. We found the resumption procedure to take place in a complex way, via a disturbance of step growth features, followed by the recovery after a certain time.


2009 ◽  
Vol 1203 ◽  
Author(s):  
Humberto Gomez ◽  
Christopher L. Frewin ◽  
Ashok Kumar ◽  
Stephen Saddow ◽  
Christopher Locke

AbstractThe unique material characteristics of silicon carbide (SiC) and nanocrystalline diamond (NCD) present solutions to many problems in conventional MEMS applications and especially for biologically compatible devices. Both materials have a wide bandgap along with excellent optical, thermal and mechanical properties. Initial experiments were performed for NCD films grown on 3C-SiC using a microwave plasma chemical vapor deposition (MPCVD) reactor. It was observed from the atomic force microscopy (AFM) analysis that the NCD films on 3C-SiC possess a more uniform grain structure, with sizes ranging from approximately 5 – 10 nm, whereas on the Si surface, the NCD has large, non-unioform inclusions of grains ≈1 μm in size. The in vitro biocompatibility performance of NCD/3C-SiC was measured utilizing 2 immortalized neural cell lines: H4 human neuroglioma (ATCC #HTB-148) and PC12 rat pheochromocytoma (ATCC #CRL-1721). MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to measure viability of the cells for 96 hours and live/ fixed cell. AFM was performed to determine the general cell morphology. The H4 cell line shows a good biocompatibility level with hydrogen treated NCD as compared with the cell treated polystyrene control well, while the PC12 cells show decreased viability on the NCD surfaces.


2005 ◽  
Vol 480-481 ◽  
pp. 71-76 ◽  
Author(s):  
Jin Chun Jiang ◽  
Wen Juan Cheng ◽  
Yang Zhang ◽  
He Sun Zhu ◽  
De Zhong Shen

Carbon nitride films were grown on Si substrates by a microwave plasma chemical vapor deposition method, using mixture of N2, CH4 and H2 as precursor. Scanning electron microscopy shows that the films consisted of a large number of hexagonal crystallites. The dimension of the largest crystallite is about 3 µm. The X-ray photoelectron spectroscopy suggests that nitrogen and carbon in the films are bonded through hybridized sp2 and sp3 configurations. The X-ray diffraction pattern indicates that the major part of the films is composed of α-, β-, pseudocubic C3N4 and graphitic C3N4. The Raman peaks match well with the calculated Raman frequencies of α- and β-C3N4, revealing the formation of the α- and β-C3N4 phase.


2019 ◽  
Vol 11 (9) ◽  
pp. 1292-1297
Author(s):  
Yeong Min Park ◽  
Moon Ki Han ◽  
Mun Ki Bae ◽  
Tae Gyu Kim

Nanocrystalline diamond (NCD) is exceptionally useful for a variety of applications and is of significant interest to researchers in technological and scientific fields due to its excellent mechanical and chemical properties, such as its hardness and high thermal conductivity. We have modified a microwave plasma chemical vapor deposition (MPCVD; Astex Inc.) system with a slot antenna designed for surface wave plasma (SWP) and successfully fabricated high quality thin NCD film. This SWP-CVD process fabricates high quality diamond film at 300 °C, while a normal MPCVD process requires the temperature of the substrate to be above 800 °C. We studied the fabricated NCD samples in detail, measuring their surface morphology by field emission scanning electron microscopy (FESEM); their structural-chemical properties by Raman spectroscopy; and their surface roughness by atomic force microscopy (AFM).


Sign in / Sign up

Export Citation Format

Share Document