Mg–Ni–(Gd,Nd) bulk metallic glasses with improved glass-forming ability and mechanical properties

2009 ◽  
Vol 24 (6) ◽  
pp. 2130-2140 ◽  
Author(s):  
J. Yin ◽  
G.Y. Yuan ◽  
Z.H. Chu ◽  
J. Zhang ◽  
W.J. Ding

In this work, we report a new Mg-based glass-forming system of Mg–Ni–(Gd,Nd), which can be produced into glassy rods with maximum diameters of 2–5 mm by copper mold casting. The Mg75Ni15Gd10–xNdx(x = 0–10) BMGs simultaneously possess a high level of glass transition temperatures, high specific strength up to 2.75 × 105 Nm/kg, and enhanced malleability with plastic strains over 1%. In particular, the Mg75Ni15Gd5Nd5 BMG with the glass-forming ability (GFA) up to 5 mm, exhibited compressive yield strength over 900 MPa and plastic strain up to 50% without failure for the specimen with an aspect ratio of 0.5. The improved GFA and malleability for the Mg75Ni15Gd10–x Ndx(x = 0–10) BMGs were discussed, which exhibited their promising potentials for the application as lightweight engineering materials.

2005 ◽  
Vol 20 (9) ◽  
pp. 2307-2313 ◽  
Author(s):  
W.H. Wang ◽  
J.J. Lewandowski ◽  
A.L. Greer

Interest in finding binary alloys that can form bulk metallic glasses has stimulated recent work on the Cu–Zr system, which is known to show glass formation over a wide composition range. This work focuses on copper mold casting of Cu50Zr50 (at.%), and it is shown that fully amorphous rods up to 2-mm diameter can be obtained. The primary intermetallic phase competing with glass formation on cooling is identified, and the glass-forming ability is interpreted in terms of a metastable eutectic involving this phase. Minor additions of aluminum increase the glass-forming ability: with addition of 4 at.% Al to Cu50Zr50, rods of at least 5-mm diameter can be cast fully amorphous. The improvement of glass-forming ability is related to suppression of the primary intermetallic phase.


2008 ◽  
Vol 23 (5) ◽  
pp. 1249-1257 ◽  
Author(s):  
Chun-Li Dai ◽  
Jing-Wei Deng ◽  
Ze-Xiu Zhang ◽  
Jian Xu

Starting from Cu60Zr30Ti10, the compositional dependence of bulk metallic glass (BMG) formation was revisited in the Cu−Zr−Ti ternary system. It was revealed that the optimal BMG-forming composition is located at Cu60Zr33Ti7, for which a monolithic BMG rod 4 mm in diameter can be fabricated using copper mold casting. This composition is along, although slightly off, the univariant eutectic groove for the reaction (L → Cu8Zr3 + Cu10Zr7). With respect to the corresponding Cu−Zr binary alloys, Ti has a significant effect on further stabilizing the liquid, thus increasing the glass-forming ability. For the Cu60Zr40−yTiy (3 ⩽ y ⩽ 10) series BMGs, the glass transition temperature Tg decreased with increasing Ti content, at a rate of about 2.8 K/at.%. Among these BMGs, significant compositional dependence of compressive plasticity is not observed, irrespective of the Tg change. Cu60Zr33Ti7 glass exhibits maximum fracture strength around 2160 MPa.


2005 ◽  
Vol 20 (8) ◽  
pp. 1935-1938 ◽  
Author(s):  
X. Gu ◽  
G.J. Shiflet ◽  
F.Q. Guo ◽  
S.J. Poon

The development of Mg–Ca–Zn metallic glasses with improved bulk glass forming ability, high strength, and significant ductility is reported. A typical size of at least 3–4 mm amorphous samples can be prepared using conventional casting techniques. By varying the composition, the mass density of these light metal based bulk amorphous alloys ranges from 2.0 to 3.0 g/cm3. The typical measured microhardness is 2.16 GPa, corresponding to a fracture strength of about 700 MPa and specific strength of around 250–300 MPa cm3/g. Unlike other Mg- or Ca-based metallic glasses, the present Mg–Ca–Zn amorphous alloys show significant ductility.


2011 ◽  
Vol 399-401 ◽  
pp. 1012-1015
Author(s):  
Jian Peng Wu ◽  
Shan Dong Li ◽  
Mei Mei Liu ◽  
Xin Le Cai ◽  
Yi Hu ◽  
...  

The effect of C substitution on the glass forming ability (GFA) and soft magnetic properties of Fe-based bulk metallic glasses (BMG) Fe79.4-xCxSi3.5B5.1P8.9Mo3Mn0.1(x = 4.2, 5.2, and 7.0) alloys have been investigated. It is revealed that fully glassy alloy rods with diameters up to 4 mm can be prepared by conventional copper mold casting method even using the low-cost industrial Fe-P master alloy. Properly substituting of Fe by C gives rise to an enhancement of GFA. Moreover, all the samples exhibit good soft magnetic properties with high saturation magnetization up to 1.16 T and low coercivity of 204 A/m.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 223 ◽  
Author(s):  
Pan Gong ◽  
Fangwei Li ◽  
Junsong Jin

We developed novel Ti-Zr-Be-Co bulk metallic glasses through Co addition based on a ternary Ti45Zr20Be35 alloy. By altering the alloying routes and alloying contents, the influence of Co alloying on glass-forming ability, thermal stability, thermoplastic formability, crystallization behavior, and corrosion resistance has been investigated systematically. It was found that the best alloying route for enhancing the glass-forming ability, thermoplastic formability, compressive plasticity, and corrosion resistance is to replace Be by Co. Ti45Zr20Be23Co12 possesses the largest critical diameter of 15 mm for glass formation. Ti45Zr20Be27Co8 possesses the highest thermoplastic formability which is comparable to that of Vitreloy alloys. Ti45Zr20Be25Co10 exhibits the largest room temperature plasticity of 15.7% together with a high specific strength of 3.90 × 105 Nm/kg. The addition of Co also strongly affects the crystallization behavior of the base alloy, resulting in a more complex crystallization process. The corrosion resistance of Ti-Zr-Be alloy in 1 mol/L HCl solution can also be enhanced by Co alloying. The related mechanisms have been explained in detail, which provide guidance for the composition design of Ti-based metallic glasses with improved properties.


2013 ◽  
Vol 43 ◽  
pp. 177-181 ◽  
Author(s):  
P. Gong ◽  
X. Wang ◽  
Y. Shao ◽  
N. Chen ◽  
X. Liu ◽  
...  

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1235-1240 ◽  
Author(s):  
QING YANG ◽  
SHUJIE PANG ◽  
RAN LI ◽  
TAO ZHANG

Bulk metallic glasses (BMGs) in pseudo-ternary ( La - Ce )- Al - Cu system with high glass-forming ability (GFA) were synthesized based on the beneficial effect of the coexistence of similar elements La and Ce with similar atomic size and various valence electronic structures on GFA. With the coexistence of La and Ce in ( La x Ce 1- x )65 Al 10 Cu 25 system, bulk metallic glasses with diameters up to 12 mm can be produced by copper mold casting. Besides the high GFA, the ( La x Ce 1- x )65 Al 10 Cu 25 BMGs with x = 0.6 and 0.7 exhibit low glass transition temperature T g around 362 K and wide supercooled liquid regions ΔT x (ΔT x = T x - T g , where T x is the onset temperature of crystallization) of about 80 K. Compared with ternary La - Al - Cu and Ce - Al - Cu systems, significant improvement of GFA for the ( La - Ce )- Al - Cu system is caused by the coexistence of similar elements La and Ce , and the mechanism is discussed from a thermodynamic viewpoint.


2003 ◽  
Vol 18 (10) ◽  
pp. 2288-2291 ◽  
Author(s):  
H. Ma ◽  
E. Ma ◽  
J. Xu

We report a new Mg-based bulk metallic glass-forming alloy: Mg65Cu7.5Ni7.5Zn5 Ag5Y10. The alloy exhibits a glass-forming ability significantly stronger than all previously discovered Mg-based glass formers. Fully glassy rods 9 mm in diameter can be obtained by using copper mold casting. The critical cooling rate for glass formation was estimated to be <50 Ks−1. The reduced glass-transition temperature (Trg) of the glass was determined to be 0.59.


2022 ◽  
Vol 8 ◽  
Author(s):  
M. Zhang ◽  
Y.Q. Song ◽  
H.J. Lin ◽  
Z. Li ◽  
W. Li

Ti-based metallic glasses (MGs) possess high specific strength, low elastic modulus, high elasticity, high wear and corrosion resistance, and excellent biocompatibility, which make them highly attractive as lightweight high-strength materials as well as biomaterials. However, the glass forming ability (GFA) of Ti-based MGs, particularly those bearing no toxic, noble, or heavy metals, that is, Be, Pd, or Cu alike, largely sets back their wide applications for the restricted critical glass forming size of these Ti-based MGs. In this review, the outlines in developing Ti-based MGs are delineated in order to provide an overall view on the efforts ever made to fabricate bulk size Ti-based MGs. The state of the art in the knowledge on the GFA of Ti-based MGs is briefly introduced, and possible directions for fabricating bulk size toxic and noble element free Ti-based MGs are discussed.


Sign in / Sign up

Export Citation Format

Share Document