A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability

2003 ◽  
Vol 18 (10) ◽  
pp. 2288-2291 ◽  
Author(s):  
H. Ma ◽  
E. Ma ◽  
J. Xu

We report a new Mg-based bulk metallic glass-forming alloy: Mg65Cu7.5Ni7.5Zn5 Ag5Y10. The alloy exhibits a glass-forming ability significantly stronger than all previously discovered Mg-based glass formers. Fully glassy rods 9 mm in diameter can be obtained by using copper mold casting. The critical cooling rate for glass formation was estimated to be <50 Ks−1. The reduced glass-transition temperature (Trg) of the glass was determined to be 0.59.

2008 ◽  
Vol 23 (5) ◽  
pp. 1249-1257 ◽  
Author(s):  
Chun-Li Dai ◽  
Jing-Wei Deng ◽  
Ze-Xiu Zhang ◽  
Jian Xu

Starting from Cu60Zr30Ti10, the compositional dependence of bulk metallic glass (BMG) formation was revisited in the Cu−Zr−Ti ternary system. It was revealed that the optimal BMG-forming composition is located at Cu60Zr33Ti7, for which a monolithic BMG rod 4 mm in diameter can be fabricated using copper mold casting. This composition is along, although slightly off, the univariant eutectic groove for the reaction (L → Cu8Zr3 + Cu10Zr7). With respect to the corresponding Cu−Zr binary alloys, Ti has a significant effect on further stabilizing the liquid, thus increasing the glass-forming ability. For the Cu60Zr40−yTiy (3 ⩽ y ⩽ 10) series BMGs, the glass transition temperature Tg decreased with increasing Ti content, at a rate of about 2.8 K/at.%. Among these BMGs, significant compositional dependence of compressive plasticity is not observed, irrespective of the Tg change. Cu60Zr33Ti7 glass exhibits maximum fracture strength around 2160 MPa.


2011 ◽  
Vol 688 ◽  
pp. 426-430 ◽  
Author(s):  
Yan Fang Wang ◽  
Li Li ◽  
Chuan Sun ◽  
Qing Long Lu ◽  
Zhi Qiang Shi

The rare earth elements (RE= Y, Sm, La, Ce) were used as alloying materials in Cu50Zr45Al5BMG, and their influences on the glass-forming ability and thermal stability were studied in this paper. All the samples remained in full metallic glass state with minor additions of Y, Sm and La. Increasing the amount of RE additions, the Cu10Zr7and Zr2Cu phases precipitated and glass transition temperatureTgand crystallization temperatureTxsignificantly decreased. The reduced glass transition temperature Trg=Tg/Tlranged from 0.592 to 0.611 and the γ parameter ranged from 0.393 to 0.409.


2005 ◽  
Vol 20 (9) ◽  
pp. 2252-2255 ◽  
Author(s):  
H. Ma ◽  
Q. Zheng ◽  
J. Xu ◽  
Y. Li ◽  
E. Ma

Mg−Cu−Y alloys with optimal glass forming ability have been found at off-eutectic compositions. The critical size for bulk metallic glass formation at the pinpointed compositions more than doubles that of the previously discovered eutectic Mg65Cu25Y10 alloy, leading to fully glassy rods with near-centimeter diameters in the ternary system upon copper mold casting. The result is a striking demonstration of the strong composition dependence of the glass forming ability, as well as of the need to scrutinize off-eutectic compositions. The implications of the discovery are discussed.


2015 ◽  
Vol 1114 ◽  
pp. 68-75
Author(s):  
Mariana Lucaci ◽  
Delia Patroi ◽  
Violeta Tsakiris ◽  
Magdalena Valentina Lungu ◽  
Eugen Manta ◽  
...  

Researches and developments were carried out for obtaining of bulk metallic glass (BMG) from the Fe-Cr-Ni-Si-B system. The used processing methods were copper mold casting and melt spinning method. The resulted materials are in form of sheets with sizes of 69.7 x 64 x 3/1.5 mm and of strips with thickness less than 50 microns, which were obtained by varying the melt spin technological parameters. The both processing variants are not suitable for obtaining such of alloy in bulk metallic glass form. Adding of zirconium to this alloy produces bulk metallic glasses only for the melt spin products. The DSC analysis emphases that the zirconium modified alloy processed by melt spinning method exhibits a high glass forming ability (GFA).


2002 ◽  
Vol 754 ◽  
Author(s):  
Wei Hua Wang ◽  
Ping Wen ◽  
Yan Hui Zhao ◽  
Ming Xiang Pan ◽  
De Qian Zhao

ABSTRACTA new method is developed to directly exhibit glass transition in Zr-Ti-Cu-Ni-Be bulk glass-forming alloy under high pressure in metallic glass. Via the method, we derive an increase of glass transition temperature, Tg with pressure of 5.6 K/GPa, and a formation volume (ΔVf) of 6.5 Å3 for diffusion and the migration volume (ΔVm) of 6.5 Å3. The glass transition under high pressure is simulated based on the free-volume theory, and the simulations are consistent with the experimental observations.


2008 ◽  
Vol 23 (10) ◽  
pp. 2816-2820 ◽  
Author(s):  
H. Ma ◽  
H-J. Fecht

The thermodynamic and kinetic fragilities of two near-eutectic Mg-based bulk metallic glass (BMG)-forming liquids, Mg61Cu28Gd11 and Mg59.5Cu22.9Ag6.6Gd11, were investigated using high-precision differential scanning calorimeter (DSC). The thermodynamic fragility denoted as F3/4 was determined by evaluating the temperature dependence of the excess entropy Sex. The heating rate dependence of the relaxation time at the glass transition temperature was investigated to measure the kinetic fragility. A positive correlation between the thermodynamic and kinetic fragilities could be established in Mg-based BMG-forming liquids on the basis of Adam-Gibbs equation in contrast to a number of other BMGs.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 579
Author(s):  
Ting Shi ◽  
Lanping Huang ◽  
Song Li

Structural relaxation and nanomechanical behaviors of La65Al14Ni5Co5Cu9.2Ag1.8 bulk metallic glass (BMG) with a low glass transition temperature during annealing have been investigated by calorimetry and nanoindentation measurement. The enthalpy release of this metallic glass is deduced by annealing near glass transition. When annealed below glass transition temperature for 5 min, the recovered enthalpy increases with annealing temperature and reaches the maximum value at 403 K. After annealed in supercooled liquid region, the recovered enthalpy obviously decreases. For a given annealing at 393 K, the relaxation behaviors of La-based BMG can be well described by the Kohlrausch-Williams-Watts (KWW) function. The hardness, Young’s modulus, and serrated flow are sensitive to structural relaxation of this metallic glass, which can be well explained by the theory of solid-like region and liquid-like region. The decrease of ductility and the enhancement of homogeneity can be ascribed to the transformation from liquid-like region into solid-like region and the reduction of the shear transition zone (STZ).


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 425 ◽  
Author(s):  
Edueng ◽  
Bergström ◽  
Gråsjö ◽  
Mahlin

This study shows the importance of the chosen method for assessing the glass-forming ability (GFA) and glass stability (GS) of a drug compound. Traditionally, GFA and GS are established using in situ melt-quenching in a differential scanning calorimeter. In this study, we included 26 structurally diverse glass-forming drugs (i) to compare the GFA class when the model drugs were produced by spray-drying with that when melt-quenching was used, (ii) to investigate the long-term physical stability of the resulting amorphous solids, and (iii) to investigate the relationship between physicochemical properties and the GFA of spray-dried solids and their long-term physical stability. The spray-dried solids were exposed to dry (<5% RH) and humid (75% RH) conditions for six months at 25 °C. The crystallization of the spray-dried solids under these conditions was monitored using a combination of solid-state characterization techniques including differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. The GFA/GS class assignment for 85% of the model compounds was method-dependent, with significant differences between spray-drying and melt-quenching methods. The long-term physical stability under dry condition of the compounds was predictable from GFA/GS classification and glass transition and crystallization temperatures. However, the stability upon storage at 75% RH could not be predicted from the same data. There was no strong correlation between the physicochemical properties explored and the GFA class or long-term physical stability. However, there was a slight tendency for compounds with a relatively larger molecular weight, higher glass transition temperature, higher crystallization temperature, higher melting point and higher reduced glass transition temperature to have better GFA and better physical stability. In contrast, a high heat of fusion and entropy of fusion seemed to have a negative impact on the GFA and physical stability of our dataset.


2003 ◽  
Vol 18 (3) ◽  
pp. 664-671 ◽  
Author(s):  
Y. Zhang ◽  
H. Tan ◽  
H. Z. Kong ◽  
B. Yao ◽  
Y. Li

A eutectic point in Pr-rich Pr-(Cu,Ni)-Al alloys was experimentally determined by measuring the solidus temperature (Tm) and liquidus temperature (T1). It was found that Pr68(Cu0.5Ni0.5)25Al7 (at.%) is at the eutectic composition in the pseudoternary Pr–(Cu0.5Ni0.5)–Al alloys. The alloy Pr68(Cu0.5Ni0.5)25Al7 exhibits better glass-forming ability (GFA) than the ternary eutectic alloy Pr68Cu25Al7. However, the best GFA was obtained at an off-eutectic composition (Pr54[Cu0.5Ni0.5]30Al16) in the Pr–(Cu0.5Ni0.5)–Al alloys, which can be formed in fully amorphous rods with diameter of 1.5 mm by copper mold casting. Moreover, the glass-transition temperature Tg increases quickly (from 367 to 522 K) with the increasing of the Al content (from 3 to 27 at.%). The deviation of the best GFA composition from the eutectic point [Pr68(Cu0.5Ni0.5)25Al7] was explained in terms of the asymmetric coupled eutectic zone, the competition between growth of crystalline phase and formation of amorphous, and the higher glass-transition temperature Tg on the hypereutectic side.


Sign in / Sign up

Export Citation Format

Share Document