Improved cycling stability of nanostructured electrode materials enabled by prelithiation

2010 ◽  
Vol 25 (8) ◽  
pp. 1413-1420 ◽  
Author(s):  
Liqiang Mai ◽  
Lin Xu ◽  
Bin Hu ◽  
Yanhui Gu

This review represents recent research on using chemical prelithiation to improve cycling performance of nanostructured electrode materials for lithium ion batteries in our group. We focus on two typical cathode materials, MoO3 nanobelts and FeSe2 nanoflowers. Methods of direct or secondary hydrothermal lithiation of MoO3 nanobelts and FeSe2 nanoflowers are described first, followed by electrochemical investigation of the samples before and after lithiation. Compared with pristine materials, lithiated samples exhibit better cycling capability. Prelithiation of other kinds of materials, such as V2O5, MnO2, etc. is also briefly reviewed. This demonstrates that prelithiation can be a powerful general approach for improving cycling performance of Li-ion battery electrode materials.

2021 ◽  
Author(s):  
Md. Mahmud

The energy and storage sector of today's world is constantly facing challenges in terms of the performance, functionality of the fundamental materials. Graphene is a Carbon-based material that is extensively investigated as anode material for rechargeable secondary Lithium-ion batteries (LIBs) because of its amazing superlative properties i.e. mechanical, optical, electrical, thermal, and sensing properties. Graphene has extraordinary electron mobility (2.5×105 cm2 V-1 s-1) and a large surface area (2630 m2g-1) and these interesting properties make it a suitable material for the energy storage device. Also Nanostructure evolution of graphene, its electrochemical performance raised to a new stage. In this review, we focus on the electrochemical performance of graphene and Graphene-based nanocomposite materials in Lithium-ion Batteries and also focuses on the synthesis route of graphene which is used both industrially and commercially.


2018 ◽  
Vol 20 (11) ◽  
pp. 7447-7456 ◽  
Author(s):  
Zicheng Wang ◽  
Shuzhou Li ◽  
Yaping Zhang ◽  
Huaizhe Xu

In recent years, organic-based, especially carbonyl-based, Li-ion battery electrode materials have attracted great attention due to their low-cost, environmentally friendly nature and strong Li-ion bonding abilities.


2015 ◽  
Vol 8 (6) ◽  
pp. 1640-1650 ◽  
Author(s):  
Leila Ghadbeigi ◽  
Jaye K. Harada ◽  
Bethany R. Lettiere ◽  
Taylor D. Sparks

A data-driven analysis of lithium-ion battery electrode materials using unique visualization methods to explore correlations not seen in single material publications.


2020 ◽  
Vol 49 (31) ◽  
pp. 10808-10815 ◽  
Author(s):  
Kainian Chu ◽  
Zhiqiang Li ◽  
Shikai Xu ◽  
Ge Yao ◽  
Yang Xu ◽  
...  

Binary metal oxides with high theoretical specific capacities and power densities are promising anode materials for lithium-ion batteries but their poor cycling stability and huge volume expansion limit their extensive application in practical electrode materials.


Nanoscale ◽  
2021 ◽  
Author(s):  
Kun Wang ◽  
Yongyuan Hu ◽  
Jian Pei ◽  
Fengyang Jing ◽  
Zhongzheng Qin ◽  
...  

High capacity Co2VO4 becomes a potential anode material for lithium ion batteries (LIBs) benefiting from its lower output voltage during cycling than other cobalt vanadates. However, the application of this...


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4348
Author(s):  
Chi Zhang ◽  
Zheng Wang ◽  
Yu Cui ◽  
Xuyao Niu ◽  
Mei Chen ◽  
...  

The volume expansion during Li ion insertion/extraction remains an obstacle for the application of Sn-based anode in lithium ion-batteries. Herein, the nanoporous (np) Cu6Sn5 alloy and Cu6Sn5/Sn composite were applied as a lithium-ion battery anode. The as-dealloyed np-Cu6Sn5 has an ultrafine ligament size of 40 nm and a high BET-specific area of 15.9 m2 g−1. The anode shows an initial discharge capacity as high as 1200 mA h g−1, and it remains a capacity of higher than 600 mA h g−1 for the initial five cycles at 0.1 A g−1. After 100 cycles, the anode maintains a stable capacity higher than 200 mA h g−1 for at least 350 cycles, with outstanding Coulombic efficiency. The ex situ XRD patterns reveal the reverse phase transformation between Cu6Sn5 and Li2CuSn. The Cu6Sn5/Sn composite presents a similar cycling performance with a slightly inferior rate performance compared to np-Cu6Sn5. The study demonstrates that dealloyed nanoporous Cu6Sn5 alloy could be a promising candidate for lithium-ion batteries.


2015 ◽  
Vol 3 (7) ◽  
pp. 3659-3666 ◽  
Author(s):  
Gang Wang ◽  
Jun Peng ◽  
Lili Zhang ◽  
Jun Zhang ◽  
Bin Dai ◽  
...  

Nanostructured electrode materials have been extensively studied with the aim of enhancing lithium ion and electron transport and lowering the stress caused by their volume changes during the charge–discharge processes of electrodes in lithium-ion batteries.


2011 ◽  
Vol 197-198 ◽  
pp. 1113-1116 ◽  
Author(s):  
Wen Li Yao ◽  
Jin Qing Chen ◽  
An Yun Li ◽  
Xin Bing Chen

The platelike Co3O4/carbon nanofiber (CNF) composite materials were synthesized by the calcination of β-Co(OH)2/CNF precursor prepared by a surfactant-free hydrothermal method. As negative electrode materials for lithium-ion batteries, the platelike Co3O4/CNF composites can deliver a high reversible capacity of 900 mAh g-1 for a life extending over hundreds of cycles at a current density of 100 mA g-1. The high Li-storage capacity and excellent cycling performance for Co3O4/CNF composite materials may mainly attribute to the beneficial effect of the CNFs addition on enhancing structural stability and electrical conductivity of Co3O4 platelets.


Author(s):  
Daniel J. Lyons ◽  
Jamie L. Weaver ◽  
Anne C. Co

Li distribution within micron-scale battery electrode materials is quantified with neutron depth profiling (NDP). This method allows the determination of intra- and inter-electrode parameters such as lithiation efficiency, electrode morphology...


2019 ◽  
Vol 9 (13) ◽  
pp. 2677 ◽  
Author(s):  
Yong Liu ◽  
Haichao Wang ◽  
Keke Yang ◽  
Yingnan Yang ◽  
Junqing Ma ◽  
...  

A binder plays an important role in lithium-ion batteries (LIBs), especially for the electrode materials which have large volume expansion during charge and discharge. In this work, we designed a cross-linked polymeric binder with an esterification reaction of Sodium Carboxymethyl Cellulose (CMC) and Fumaric Acid (FA), and successfully used it in an Sb2O3 anode for LIBs. Compared with conventional binder polyvinylidene fluoride (PVDF) and CMC, the new cross-linked binder improves the electrochemical stability of the Sb2O3 anode. Specifically, with CMC-FA binder, the battery could deliver ~611.4 mAh g−1 after 200 cycles under the current density of 0.2 A g−1, while with PVDF or CMC binder, the battery degraded to 265.1 and 322.3 mAh g−1, respectively. The improved cycling performance is mainly due to that the cross-linked CMC-FA network could not only efficiently improve the contact between Sb2O3 and conductive agent, but can also buffer the large volume charge of the electrode during repeated charge/discharge cycles.


Sign in / Sign up

Export Citation Format

Share Document