Highly emitting perovskite quantum dots are finally available in water

2018 ◽  
Vol 9 (01) ◽  
pp. 1-2 ◽  
Author(s):  
Guocan Jiang ◽  
Nikolai Gaponik

The interest on strongly emitting colloidal perovskite nanoparticles has been arisen explosively since several years. The versatility of the synthesis and the resulting scale-up, as well as high performance in terms of photoluminescence quantum yields and narrow spectra make these nanocrystals extremely attractive in optoelectronics. However, commonly known instability of these nanoparticles in aqueous environment is an important issue limiting their applications. This letter highlights a recent report by Geng et al. presenting direct aqueous synthesis of strongly emitting perovskite nanocrystals. One can foresee extrapolation of these results toward other perovskites including those based on Pb-free materials.

2016 ◽  
Vol 52 (45) ◽  
pp. 7265-7268 ◽  
Author(s):  
Song Wei ◽  
Yanchun Yang ◽  
Xiaojiao Kang ◽  
Lan Wang ◽  
Lijian Huang ◽  
...  

CsPbX3 perovskite quantum dots with 50–85% photoluminescence quantum yields have been successfully synthesized at room temperature in open air.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

AbstractAll-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer. These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage. Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion. The champion CsPbI3 quantum dot solar cell has an efficiency of 15.1% (stabilized power output of 14.61%), which is among the highest report to date. Building on this strategy, we further demonstrate a highest efficiency of 12.3% in flexible quantum dot photovoltaics.


2020 ◽  
Vol 59 (49) ◽  
pp. 22230-22237 ◽  
Author(s):  
Junwei Shi ◽  
Fangchao Li ◽  
Yan Jin ◽  
Cheng Liu ◽  
Ben Cohen‐Kleinstein ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (37) ◽  
pp. 17216-17221 ◽  
Author(s):  
Daqin Chen ◽  
Yue Liu ◽  
Changbin Yang ◽  
Jiasong Zhong ◽  
Su Zhou ◽  
...  

Highly luminescent glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite QDs are fabricated via an in situ glass crystallization strategy and fluorine doping.


2020 ◽  
Vol 20 (9) ◽  
pp. 5478-5485
Author(s):  
Cong Xie ◽  
Yubin Zhao ◽  
Yuxiang Song ◽  
Yingjie Liu ◽  
Yaya Wang ◽  
...  

Compared with conventional semiconductor quantum dots, hybrid SiO2 coated CdTe QDs exhibited high stability, long fluorescent lifetime, high photoluminescence quantum yields, and well biocompatibility. In this paper, CdTe QDs with tunable PL from green to red emitting were prepared by an aqueous synthesis. A sol–gel process resulted in CdTe QDs coated with a hybrid SiO2 shell contained CdS-like clusters to obtain red-shifted PL spectra, increased PL efficiency and high stability. The clusters were formed by the reaction of Cd2+ and S2− ions generated via the decomposition of thioglycolic acid. The clusters around CdTe cores created a core–shell structure which is very similar with traditional semiconductor core–shell QDs. After being coated with a hybrid SiO2 shell, the PL of green-emitting naked CdTe QDs was red-shifted largely (~30 nm) while the PL of yellowemitting CdTe QDs revealed a small red-shifted (~20 nm). Furthermore, The PL of red-emitting naked CdTe QDs was red-shifted much small (less than 10 nm). This phenomenon is ascribed to the change of band gap of CdTe cores with sizes. The red-shift of PL spectra is attributed to the CdS-like clusters around the core rather than the thickness of the hybrid SiO2 shell.


Nano Research ◽  
2021 ◽  
Author(s):  
Md Mehedi Hasan ◽  
Eric Moyen ◽  
Jewel Kumer Saha ◽  
Md Mobaidul Islam ◽  
Arqum Ali ◽  
...  

2018 ◽  
Vol 6 (44) ◽  
pp. 21729-21746 ◽  
Author(s):  
Yuanyuan Dong ◽  
Yizhou Zhao ◽  
Siyu Zhang ◽  
Yi Dai ◽  
Lang Liu ◽  
...  

Halide perovskite nanocrystals (NCs) and quantum dots (QDs) have received considerable attention, due to their superior photoluminescence quantum yields close to unity, variable morphologies, and tunable optical bandgaps achieved by modifying their composition, size and dimensionality.


Sign in / Sign up

Export Citation Format

Share Document