Effect of Cores on Photoluminescence of Hybrid SiO2-Coated CdTe Quantum Dots

2020 ◽  
Vol 20 (9) ◽  
pp. 5478-5485
Author(s):  
Cong Xie ◽  
Yubin Zhao ◽  
Yuxiang Song ◽  
Yingjie Liu ◽  
Yaya Wang ◽  
...  

Compared with conventional semiconductor quantum dots, hybrid SiO2 coated CdTe QDs exhibited high stability, long fluorescent lifetime, high photoluminescence quantum yields, and well biocompatibility. In this paper, CdTe QDs with tunable PL from green to red emitting were prepared by an aqueous synthesis. A sol–gel process resulted in CdTe QDs coated with a hybrid SiO2 shell contained CdS-like clusters to obtain red-shifted PL spectra, increased PL efficiency and high stability. The clusters were formed by the reaction of Cd2+ and S2− ions generated via the decomposition of thioglycolic acid. The clusters around CdTe cores created a core–shell structure which is very similar with traditional semiconductor core–shell QDs. After being coated with a hybrid SiO2 shell, the PL of green-emitting naked CdTe QDs was red-shifted largely (~30 nm) while the PL of yellowemitting CdTe QDs revealed a small red-shifted (~20 nm). Furthermore, The PL of red-emitting naked CdTe QDs was red-shifted much small (less than 10 nm). This phenomenon is ascribed to the change of band gap of CdTe cores with sizes. The red-shift of PL spectra is attributed to the CdS-like clusters around the core rather than the thickness of the hybrid SiO2 shell.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Zhimin Yuan ◽  
Ping Yang ◽  
Yongqiang Cao

CdTe and CdTe/CdS quantum dots (QDs) were prepared in aqueous solutions using thioglycolic acid as a stabilizing agent. The photoluminescence (PL) wavelength of the QDs depended strongly on the size of CdTe cores and the thickness of CdS shells. Being kept at room temperature for 130 days, the PL wavelength of CdTe and CdTe/CdS QDs was red-shifted. However the red-shifted degree of CdTe QDs is larger than that of CdTe/CdS QDs. The size of CdTe QDs and the thickness of CdS play important roles for the red-shift of PL spectra of CdTe/CdS QDs. In contrast, the full width at half maximum of PL spectra of CdTe and CdTe/CdS QDs almost remained unchanged. This is ascribed to the effects of Cd2+ and TGA in solutions on the growth of CdTe and CdTe/CdS QDs. This associated with the variation of surface state of the QDs during store. The results demonstrate that CdTe/CdS core/shell QDs have high stability compared with CdTe QDs due to a CdS shell.


2013 ◽  
Vol 06 (03) ◽  
pp. 1330003 ◽  
Author(s):  
RUILI ZHANG ◽  
XIAO ZHANG ◽  
XIAOYU LI ◽  
PING YANG

We review the preparation, phase transfer, surface modification and possible bioapplications of hydrophobic CdSe based quantum dots (QDs). CdSe cores with rod and spherical morphologies were prepared through adjusting preparation conditions. The photoluminescence (PL) of the QDs depended strongly on preparation conditions. The QDs were coated with semiconductor shells to improve their PL properties. Anisotropic growth occurred during shell coating. Core/shell QDs revealed tunable PL and high PL efficiencies up to 90%. The phase transfer of QDs from oil phase to water phase was carried out via polymer or a sol–gel process. The silanization of the QDs plays an important role for the sol–gel process. Because of a SiO2 coating, the surface modification of the QDs for bioapplications became easy. After transferring into water phase, the QDs still retained high PL efficiency. Because of their high PL, these biofunctional materials could provide a platform for various applications.


2019 ◽  
Author(s):  
Aurelio A. Rossinelli ◽  
Henar Rojo ◽  
Aniket S. Mule ◽  
Marianne Aellen ◽  
Ario Cocina ◽  
...  

<div>Colloidal semiconductor nanoplatelets exhibit exceptionally narrow photoluminescence spectra. This occurs because samples can be synthesized in which all nanoplatelets share the same atomic-scale thickness. As this dimension sets the emission wavelength, inhomogeneous linewidth broadening due to size variation, which is always present in samples of quasi-spherical nanocrystals (quantum dots), is essentially eliminated. Nanoplatelets thus offer improved, spectrally pure emitters for various applications. Unfortunately, due to their non-equilibrium shape, nanoplatelets also suffer from low photo-, chemical, and thermal stability, which limits their use. Moreover, their poor stability hampers the development of efficient synthesis protocols for adding high-quality protective inorganic shells, which are well known to improve the performance of quantum dots. <br></div><div>Herein, we report a general synthesis approach to highly emissive and stable core/shell nanoplatelets with various shell compositions, including CdSe/ZnS, CdSe/CdS/ZnS, CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S, and CdSe/ZnSe. Motivated by previous work on quantum dots, we find that slow, high-temperature growth of shells containing a compositional gradient reduces strain-induced crystal defects and minimizes the emission linewidth while maintaining good surface passivation and nanocrystal uniformity. Indeed, our best core/shell nanoplatelets (CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S) show photoluminescence quantum yields of 90% with linewidths as low as 56 meV (19.5 nm at 655 nm). To confirm the high quality of our different core/shell nanoplatelets for a specific application, we demonstrate their use as gain media in low-threshold ring lasers. More generally, the ability of our synthesis protocol to engineer high-quality shells can help further improve nanoplatelets for optoelectronic devices.</div>


Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 438 ◽  
Author(s):  
Manyu Shao ◽  
Ming Yao ◽  
Sarah De Saeger ◽  
Liping Yan ◽  
Suquan Song

An eco-friendly and efficient one-step approach for the synthesis of carbon quantum dots (CDs) that encapsulated molecularly imprinted fluorescence quenching particles (MIFQP) and their application for the determination of zearalenone (ZEA) in a cereal sample are described in this study. CDs with high luminescence were first synthesized, and then encapsulated in the silica-based matrix through a non-hydrolytic sol-gel process. The resulting ZEA-imprinted particles exhibited not only an excellent specific molecular recognition of ZEA, but also good photostability and obvious template binding-induced fluorescence quenching. Under the optimized conditions, the fluorescence intensity of MIFQP was inversely proportional to the concentration of ZEA. By validation, the detection range of these fluorescence quenching materials for ZEA was between 0.02 and 1.0 mg L−1, and the detection limit was 0.02 mg L−1 (S/N = 3). Finally, the MIFQP sensor was successfully applied for ZEA determination in corn with recoveries from 78% to 105% and the relative standard deviation (RSD %) was lower than 20%, which suggests its potential in actual applications.


2013 ◽  
Vol 699 ◽  
pp. 126-132 ◽  
Author(s):  
Toshiyuki Nomura ◽  
Syota Tanii ◽  
Hayato Tokumoto ◽  
Yasuhiro Konishi

Hollow inorganic particles have attracted considerable interest for a variety of applications. In this work, yeast powder was used as a bio-template to fabricate yeast/titania core-shell spheres. A titania precursor was deposited via the hydrolysis of tetraisopropyl titanate. Triethanolamine was employed to control the reaction rate of the sol-gel process. The hollow titania particles with a diameter of approximately 4 m and a thickness of approximately 54 nm were successfully obtained after calcination of the core-shell spheres at 700 °C. The crystal structure of the particles was anatase. The specific surface area and the average pore diameter were 21.4 m2/g and 1.6 nm, respectively. The photocatalytic activity of the hollow particles was higher compared with that of solid particles.


RSC Advances ◽  
2016 ◽  
Vol 6 (12) ◽  
pp. 10086-10093 ◽  
Author(s):  
K. Gugula ◽  
L. Stegemann ◽  
P. J. Cywiński ◽  
C. A. Strassert ◽  
M. Bredol

Surface engineered CuInS2 quantum dots with extraodrinary properties in polymer nanocomposites and high stability in sol–gel silica are presented herein.


Sign in / Sign up

Export Citation Format

Share Document