scholarly journals Characterization of Pd Impurities and Finite-Sized Defects in Detector Grade CdZnTe

2011 ◽  
Vol 1341 ◽  
Author(s):  
M.C. Duff ◽  
J.P. Bradley ◽  
Z.R. Dai ◽  
N. Teslich ◽  
A. Burger ◽  
...  

ABSTRACTSynthetic CdZnTe or “CZT” crystals are highly suitable for γ-spectrometers operating at the room temperature. Secondary phases (SP) in CZT are known to inhibit detector performance, particularly when they are present in large numbers or dimensions. These SP may exist as voids or composites of non-cubic phase metallic Te layers with bodies of polycrystalline and amorphous CZT material and voids. Defects associated with crystal twining may also influence detector performance in CZT. Using transmission electron microscopy, we identify two types of defects that are on the nano scale. The first defect consists of 40 nm diameter metallic Pd/Te bodies on the grain boundaries of Te-rich composites. Although the nano-Pd/Te bodies around these composites may be unique to the growth source of this CZT material, noble metal impurities like these may contribute to SP formation in CZT. The second defect type consists of atom-scale grain boundary dislocations. Specifically, these involve inclined “finite-sized” planar defects or interfaces between layers of atoms that are associated with twins. Finite-sized twins may be responsible for the subtle but observable striations that can be seen with optical birefringence imaging and synchrotron X-ray topographic imaging.

2007 ◽  
Vol 121-123 ◽  
pp. 255-258 ◽  
Author(s):  
Young Hwan Kim ◽  
Beong Gi Jo ◽  
Jee Hean Jeong ◽  
Young Soo Kang

A room temperature route for doping silica particles with Cu nanoparticles to achieve hybrid structures is introduced. First, silica nanoparticles were synthesized according to the well-known Stöber method by hydrolysis and condensation of TEOS in a mixture of ethanol with water, using ammonia as catalyst to initiate the reaction. These SiO2 nanoaprticles were dried at 100 oC. We measured the size of these nanoparticles with transmission electron microscopy (TEM). Second, Cu-SiO2 nanoparticles were synthesized by reaction with CuCl2 and SiO2 nanoparticles in presence of catalyst at room temperature for 12 hrs. Results show silica nanoparticles of about 70 nm size with regularly deposited Cu nanoparticles. Cu-SiO2 nanoparticles were investigated with TEM images, energy dispersive X-ray analysis (EDX) spectrum and so on.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 237-240 ◽  
Author(s):  
J. P. BORAH ◽  
C. BORGOHAIN ◽  
K. C. SARMA ◽  
K. K. SENAPATI ◽  
P. PHUKAN

The synthesis of composite magnetic nanomaterials has received increasing attention due to their electronic, magnetic, catalytic, and chemical or biological sensing properties. We have prepared cobalt ferrite–zinc sulfide nanocomposites by a chemical route. The synthesized nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and photoluminescence spectrometer (PL). The fluorescent magnetic nanoparticles (FMNPs) had a typical diameter of 30±5 nm and saturation magnetization of 5.8 emu g-1 at room temperature. So, these FMNPs may be potentially applied in different fields such as optoelectronic devices, biolabeling, imaging, drug targeting, bioseparation, magnetic fluid hyperthermia, etc.


2014 ◽  
Vol 602-603 ◽  
pp. 19-22 ◽  
Author(s):  
Lin Qiang Gao ◽  
Hai Yan Chen ◽  
Zhen Wang ◽  
Xin Zou

Nanoscale LiTaO3 powders with perovskite structure were synthesized using the solvothermal technique with glycol as solvent at 240°C for 12h. The powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD was used to elucidate room temperature structures using Rietveld refinement. The powders were pure single pervoskite phase with high crystallinity. FESEM and TEM were used to determine particle size and morphology. The average LiTaO3 grain size was estimated to be < 200nm, and TEM images indicated that LiTaO3 particles had a brick-like morphology. In addition, the effect of the temperature on the LiTaO3 power characterisitics was also detailed studied.


2007 ◽  
Vol 1038 ◽  
Author(s):  
David Black ◽  
Joseph Woicik ◽  
Martine C. Duff ◽  
Douglas B. Hunter ◽  
Arnold Burger ◽  
...  

AbstractSynthetic CdZnTe or “CZT” crystals can be used for room temperature detection of α- and γ-radiation. Structural/morphological heterogeneities within CZT, such as twinning, secondary phases (often referred to as inclusions or precipitates), and polycrystallinity can affect detector performance. As part of a broader study using synchrotron radiation techniques to correlate detector performance to microstructure, x-ray topography (XRT) has been used to characterize CZT crystals. We have found that CZT crystals almost always have a variety of residual surface damage, which interferes with our ability to observe the underlying microstructure −for purposes of crystal quality evaluation. Specific structures are identifiable as resulting from fabrication processes and from handling and shipping of sample crystals. Etching was found to remove this damage; however, our studies have shown that the radiation detector performance of the etched surfaces was inferior to the as-polished surface due to higher surface currents which result in more peak tailing and less energy resolution. We have not fully investigated the effects of the various types of inducible damage on radiation detector performance.


2010 ◽  
Vol 305-306 ◽  
pp. 33-37 ◽  
Author(s):  
S. Lallouche ◽  
M.Y. Debili

This work deals with Al-Cu thin films, deposited onto glass substrates by RF (13.56MHz) magnetron sputtering, and annealed at 773K. The film thickness was approximately the same 3-4µm. They are characterized with respect to microstructure, grain size, microstrain, dislocation density and resistivity versus copper content. Al (Cu) deposits containing 1.8, 7.21, 86.17 and 92.5at%Cu have been investigated. The use of X-ray diffraction analysis and transmission electron microscopy lead to the characterization of different structural features of films deposited at room temperature (< 400K) and after annealing (773K). The resistivity of the films was measured using the four-point probe method. The microstrain profile obtained from XRD thanks to the Williamson-Hall method shows an increase with increasing copper content.


2017 ◽  
Vol 32 (S1) ◽  
pp. S193-S200
Author(s):  
B. Peplinski ◽  
B. Adamczyk ◽  
P. Formanek ◽  
C. Meyer ◽  
O. Krüger ◽  
...  

This paper reports the first successful synthesis and the structural characterization of nanocrystalline and stacking-disordered β-cristobalite AlPO4 that is chemically stabilized down to room temperature and free of crystalline impurity phases. Several batches of the title compound were synthesized and thoroughly characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy mapping in SEM, solid-state 31P nuclear magnetic resonance (31P-NMR) spectroscopy including the TRAPDOR method, differential thermal analysis (DTA), gas-sorption methods, optical emission spectroscopy, X-ray fluorescence spectroscopy, and ion chromatography. Parameters that are critical for the synthesis were identified and optimized. The synthesis procedure yields reproducible results and is well documented. A high-quality XRD pattern of the title compound is presented, which was collected with monochromatic copper radiation at room temperature in a wide 2θ range of 5°–100°.


2014 ◽  
Vol 904 ◽  
pp. 90-94
Author(s):  
Hong Qin Shao ◽  
Zheng Guan ◽  
Jun Hua Wu ◽  
Hong Ling Liu

Multi-functional CoNiAu nanoparticles were successfully synthesized via nanoemulsion method with the use of PEO-PPO-PEO as the surfactant, C14H29CH(OH)CH2OH as the reducing agent, Ni (acac)2, Co (acac)2 and Au (ac)3 as precursors. The characterization of the CoNiAu nanoparticles was performed using X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and UV-vis near IR spectrophotometer (UV-vis). The XRD and TEM analysis confirm the formation and structure of the nanoparticles. The UV-vis and VSM measurements display the optical and magnetic properties of the CoNiAu nanoparticles at the room temperature. The CoNiAu nanoparticles with the well defined optical and magnetic properties are promised for optical, magnetic, catalytic and biomedical applications.


2016 ◽  
Vol 42 ◽  
pp. 47-52
Author(s):  
Dan Dan Huang ◽  
Zhao Dai ◽  
Kun Yang ◽  
Yuan Yuan Chu

The fabrication of gold-loaded magnetite/silica core-shell particles was presented in this paper. First, 250 nm of magnetic Fe3O4 nanoparticles were prepared by solvothermal reaction. Then, the Fe3O4 particles were coated by SiO2, and Au nanoparticles (AuNPs), respectively. The core-shell structure of these microspheres was confirmed by transmission electron microscopy (TEM) and Power X-ray diffraction (XRD). The magnetic property of the core-shell microspheres was investigated at room temperature. The results indicated that the core-shell composites had a well-retained high magnetic intensity, thus it can be easily separated from the mixture in less than a few minutes by simply using a magnet.


1994 ◽  
Vol 354 ◽  
Author(s):  
C. Uslu ◽  
B. Park ◽  
D. B. Poker

AbstractA metastable C-Si-N compound has been synthesized by high dose N+ implantation into polycrystalline /8-SiC (cubic phase). The thin films formed upon 100 keV implantations were characterized with respect to various ion doses and target temperatures. X-ray diffraction with a position-sensitive detector and cross-sectional transmission electron microscopy revealed that the as-implanted surfaces contained ∼0.15 jttm thick continuously-buried amorphous layers. Rutherford backscattering spectroscopy showed that the peak concentration of nitrogen saturated up to approximately 54 at. % with increasing doses, suggesting a new phase formation.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Baohua Zhang ◽  
Fuqiang Guo ◽  
Wei Wang

Single-crystalline ZnTe hierarchical nanostructures have been successfully synthesized by a simple thermal evaporation technology. The as-prepared products were characterized with X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscope (TEM), and photoluminescence spectrum (PL). These results showed that the ZnTe hierarchical nanostructures consisted of nanowires and nanolumps. The room temperature PL spectrum exhibited a pure green luminescence centered at 545nm. The growth mechanism of hierarchical nanostructure was also discussed.


Sign in / Sign up

Export Citation Format

Share Document