Ion implantation of Carbon and Silicon into Ge2Sb2Te5: Ion Profiles and Post Crystallization Redistribution

2011 ◽  
Vol 1338 ◽  
Author(s):  
Guy M. Cohen ◽  
Simone Raoux ◽  
Marinus Hopstaken ◽  
Siegfried Maurer

ABSTRACTIon implantation of Ge2Sb2Te5 (GST) enables localized doping of the film by using conventional lithography. Although the doped region dimensions and the doping concentration profile are defined by the opening in the mask and the ion energy, longitudinal and lateral straggling of implanted ions leads to a spread in the ions final location. Additionally, a thermal treatment such as one that induces a phase transition may lead to redistribution of the implanted dopants and further increase the spread. In this work we demonstrate doping of GST by ion implantation. Using Secondary Ion Mass Spectrometry (SIMS) we studied the as-implanted doping profiles obtain by ion implantation of carbon and silicon into GST. We also investigated by SIMS the dopant redistribution following a recrystallization annealing. The as-implanted ion profiles were found to be in fair agreement with TRIM simulation. The dopants profiles show little change after a crystallization annealing at 200°C for silicon doping and at 350°C for carbon doping.

2014 ◽  
Vol 778-780 ◽  
pp. 575-578 ◽  
Author(s):  
Tomasz Sledziewski ◽  
Aleksey Mikhaylov ◽  
Sergey A. Reshanov ◽  
Adolf Schöner ◽  
Heiko B. Weber ◽  
...  

The effect of phosphorus (P) on the electrical properties of the 4H-SiC / SiO2interface was investigated. Phosphorus was introduced by surface-near ion implantation with varying ion energy and dose prior to thermal oxidation. Secondary ion mass spectrometry revealed that only part of the implanted P followed the oxidation front to the interface. A negative flatband shift due to residual P in the oxide was found fromC-Vmeasurements. Conductance method measurements revealed a significant reduction of density of interface trapsDitwith energyEC- Eit> 0.3 V for P+-implanted samples with [P]interface= 1.5 1018cm-3in the SiC layer at the interface.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 239
Author(s):  
Dmitrij Morozow ◽  
Marek Barlak ◽  
Zbigniew Werner ◽  
Marcin Pisarek ◽  
Piotr Konarski ◽  
...  

The paper is dedicated to the lifetime prolongation of the tools designed for deep-hole drilling. Among available methods, an ion implantation process was used to improve the durability of tungsten carbide (WC)-Co guide pads. Nitrogen fluencies of 3 × 1017 cm−2, 4 × 1017 cm−2 and 5 × 1017 cm−2 were applied, and scanning electron microscope (SEM) observations, energy dispersive spectroscopy (EDS) analyses, X-ray photoelectron spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) measurements were performed for both nonimplanted and implanted tools. The durability tests of nonimplanted and the modified tools were performed in industrial conditions. The durability of implanted guide pads was above 2.5 times more than nonimplanted ones in the best case, presumably due to the presence of a carbon-rich layer and extremely hard tungsten nitrides. The achieved effect may be attributed to the dissociation of tungsten carbide phase and to the lubrication effect. The latter was due to the presence of pure carbon layer with a thickness of a few dozen nanometers. Notably, this layer was formed at a temperature of 200 °C, much smaller than in previously reported research, which makes the findings even more valuable from economic and environmental perspectives.


1998 ◽  
Vol 527 ◽  
Author(s):  
R. J. Hanrahan ◽  
S. P. Withrow ◽  
M. Puga-Lambers

ABSTRACTClassical diffusion measurements in intermetallic compounds are often complicated by low diffusivities or low solubilities of the elements of interest. Using secondary ion mass spectrometry for measurements over a relatively shallow spatial range may be used to solve the problem of low diffusivity. In order to simultaneously obtain measurements on important impurity elements with low solubilities we have used ion implantation to supersaturate a narrow layer near the surface. Single crystal NiAl was implanted with either 12C or both 56Fe and 12C in order to investigate the measurement of substitutional (Fe) versus interstitial (C) tracer diffusion and the cross effect of both substitutional and interstitial diffusion. When C alone was implanted negligible diffusion was observed over the range of times and temperatures investigated. When both Fe and C were implanted together significantly enhanced diffusion of the C was observed, which is apparently associated with the movement of Fe. This supports one theory of dynamic strain aging in Fe alloyed NiAl.


1991 ◽  
Vol 240 ◽  
Author(s):  
P. Kringhoj ◽  
B. G. Svensson

ABSTRACTThe chemical profiles of Zn, Ge, and Se implanted into InP at elevated temperatures have been measured with secondary ion mass spectrometry and correlated to the implantation damage as deduced from RBS/channeling measurements. An asymmetric broadening of the chemical profiles towards the bulk was found for implantation temperatures above 150°C. This effect is concluded to be due to impurity channeling during implantation.


1983 ◽  
Vol 25 ◽  
Author(s):  
Lawrence E. Lapides ◽  
George L. Whiteman ◽  
Robert G. Wilson

ABSTRACTQuantitative depth profiles of impurities in LPE layers of HgCdTe have been determined using relative sensitivity factors calculated from ion implantation profiles. Standards were provided for Li, Be, B, C, F, Na, Mg, Al, Si, P, S, Cl, Cu, Ga, As, Br, and In. Relative sensitivity factors as a function of ionization potential for O2+ primary ion SIMS and electron affinity for Cs+ primary ion SIMS have been calculated in order to extend quantitation to elements not yet implanted. Examples of depth profiles for implant standards and unimplanted layers are given.


1986 ◽  
Vol 75 ◽  
Author(s):  
U. K. Chakrabarti ◽  
S. J. Pearton ◽  
H. Barz ◽  
A. R. Vonneida ◽  
K. T. Short ◽  
...  

AbstractAℓN deposited by D.C. triode sputtering and spin-on, phosphorus-doped glass (PSG) layers on GaAs and InP were investigated as encapsulants. These films have similar expansion coefficients to both GaAs and InP, minimizing the amount of strain induced in the near-surface region of the underlying wafer. We have quantified this effect by direct measurements of the stress in the films and by using secondary ion mass spectrometry profiling to measure the redistribution of Cr and Fe in encapsulated GaAs and InP respectively during high temperature processing. The dopant redistribution is considerably less for the AℓN and PSG films compared to the more conventional SiO2 and Si3N4 layers. The interaction of the films with the substrate at elevated temperatures is minimal as determined by Auger profiling and the electrical properties of the surface after removal of the encapsulants. The composition of the films remains essentially constant after annealing, as measured by Rutherford backscattering, and the thickness uniformity over large wafer diameters (2″) can be excellent with close control of the deposition parameters. The activation characteristics of low dose, Si-implanted layers in GaAs using either PSG or AℓN are comparable to those obtained using capless annealing or SiO2 or Si3N4 encapsulation.


1985 ◽  
Vol 56 ◽  
Author(s):  
S.A. SCHWARZ ◽  
T. VENKATESAN ◽  
R. BHAT ◽  
M. KOZA ◽  
H.W. YOON ◽  
...  

AbstractThe effects of implantation and annealing on an AlAs-GaAs superlattice grown by OMCVD is examined with SIMS (secondary ion mass spectrometry). Several 180 keV 28Si+ implants, with doses ranging from 3 × 1013 to 3 × 1015 cm−2, are examined before and after a three hour 850 C anneal. While the implantation by itself causes some intermixing in the vicinity of the projected range, the 850 C thermal anneal induces significant mixing at depths well beyond the implant range. In the region of maximum implant damage, however, the post-thermal mixing effect is inhibited. Depth dependent diffusion lengths of Al and Si are derived from the SIMS data. The diffusion coefficient of Si is markedly enhanced in the mixed regions.


1983 ◽  
Vol 24 ◽  
Author(s):  
R. G. Wilson ◽  
D. M. Jamba ◽  
D. A. Betts

ABSTRACTIon implantation is used to fabricate waveguides in LiNbO3;. We have implanted a variety of ions into LiNbO3; at energies from 100 to 300 keV and have been able to profile their depth distributions by secondary ion mass spectrometry. We report here their depth distributions and range parameters determined from Pearson IV fitting.


Sign in / Sign up

Export Citation Format

Share Document