scholarly journals Wear Resistance Improvement of Cemented Tungsten Carbide Deep-Hole Drills after Ion Implantation

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 239
Author(s):  
Dmitrij Morozow ◽  
Marek Barlak ◽  
Zbigniew Werner ◽  
Marcin Pisarek ◽  
Piotr Konarski ◽  
...  

The paper is dedicated to the lifetime prolongation of the tools designed for deep-hole drilling. Among available methods, an ion implantation process was used to improve the durability of tungsten carbide (WC)-Co guide pads. Nitrogen fluencies of 3 × 1017 cm−2, 4 × 1017 cm−2 and 5 × 1017 cm−2 were applied, and scanning electron microscope (SEM) observations, energy dispersive spectroscopy (EDS) analyses, X-ray photoelectron spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) measurements were performed for both nonimplanted and implanted tools. The durability tests of nonimplanted and the modified tools were performed in industrial conditions. The durability of implanted guide pads was above 2.5 times more than nonimplanted ones in the best case, presumably due to the presence of a carbon-rich layer and extremely hard tungsten nitrides. The achieved effect may be attributed to the dissociation of tungsten carbide phase and to the lubrication effect. The latter was due to the presence of pure carbon layer with a thickness of a few dozen nanometers. Notably, this layer was formed at a temperature of 200 °C, much smaller than in previously reported research, which makes the findings even more valuable from economic and environmental perspectives.

Langmuir ◽  
2012 ◽  
Vol 28 (47) ◽  
pp. 16306-16317 ◽  
Author(s):  
Yolanda S. Hedberg ◽  
Manuela S. Killian ◽  
Eva Blomberg ◽  
Sannakaisa Virtanen ◽  
Patrik Schmuki ◽  
...  

1996 ◽  
Vol 11 (1) ◽  
pp. 229-235 ◽  
Author(s):  
E. Cattaruzza ◽  
R. Bertoncello ◽  
F. Trivillin ◽  
P. Mazzoldi ◽  
G. Battaglin ◽  
...  

Silica glass was implanted with chromium at the energy of 35 and 160 keV and at fluences varying from 1 × 1016 to 11 × 1016 ions cm−2. In a set of chromium-implanted samples significant amounts of carbon were detected. Samples were characterized by x-ray photoelectron spectroscopy, x-ray-excited Auger electron spectroscopy, secondary ion mass spectrometry, and Rutherford backscattering spectrometry. Chromium silicide and chromium oxide compounds were observed; the presence of carbon in the implanted layers induces the further formation of chromium carbide species. Thermodynamic considerations applied to the investigated systems supply indications in agreement with the experimental evidences.


2021 ◽  
Vol 314 ◽  
pp. 23-28
Author(s):  
Seungjun Oh ◽  
Sunyoung Lee ◽  
Heehwan Kim ◽  
Donggeon Kwak ◽  
Chulwoo Bae ◽  
...  

Technological control over ultra-trace level contaminants is important for semiconductor development. Despite technological developments, defects remain in the single wafer wet cleaning process. In this paper, the source of the contamination is explained via trace analytical methods. Fluorine resin materials of polytetrafluoroethylene (PTFE) and ethylene tetrafluoroethylene (ETFE) are commonly used in semiconductor equipment. Isopropyl alcohol (IPA) oxidation reactions occur at high temperature below the boiling point due to impurities. IPA changed to different alcohol forms from gas chromatography (GCMS) analysis. The oxygen concentration in the X-ray photoelectron spectroscopy (XPS) results increased and formed new bonds in IPA with fluorine resin. These reactions confirmed that cations were a catalyst from the time-of-flight secondary ion mass spectrometry (TOF-SIMS) results. Representative ions were Fe+, K+, and Na+ with different concentrations for each material.


1998 ◽  
Vol 527 ◽  
Author(s):  
R. J. Hanrahan ◽  
S. P. Withrow ◽  
M. Puga-Lambers

ABSTRACTClassical diffusion measurements in intermetallic compounds are often complicated by low diffusivities or low solubilities of the elements of interest. Using secondary ion mass spectrometry for measurements over a relatively shallow spatial range may be used to solve the problem of low diffusivity. In order to simultaneously obtain measurements on important impurity elements with low solubilities we have used ion implantation to supersaturate a narrow layer near the surface. Single crystal NiAl was implanted with either 12C or both 56Fe and 12C in order to investigate the measurement of substitutional (Fe) versus interstitial (C) tracer diffusion and the cross effect of both substitutional and interstitial diffusion. When C alone was implanted negligible diffusion was observed over the range of times and temperatures investigated. When both Fe and C were implanted together significantly enhanced diffusion of the C was observed, which is apparently associated with the movement of Fe. This supports one theory of dynamic strain aging in Fe alloyed NiAl.


2014 ◽  
Vol 778-780 ◽  
pp. 575-578 ◽  
Author(s):  
Tomasz Sledziewski ◽  
Aleksey Mikhaylov ◽  
Sergey A. Reshanov ◽  
Adolf Schöner ◽  
Heiko B. Weber ◽  
...  

The effect of phosphorus (P) on the electrical properties of the 4H-SiC / SiO2interface was investigated. Phosphorus was introduced by surface-near ion implantation with varying ion energy and dose prior to thermal oxidation. Secondary ion mass spectrometry revealed that only part of the implanted P followed the oxidation front to the interface. A negative flatband shift due to residual P in the oxide was found fromC-Vmeasurements. Conductance method measurements revealed a significant reduction of density of interface trapsDitwith energyEC- Eit> 0.3 V for P+-implanted samples with [P]interface= 1.5 1018cm-3in the SiC layer at the interface.


Sign in / Sign up

Export Citation Format

Share Document