Computational Study of the Electronic Performance of Cross-Plane Superlattice Peltier Devices

2011 ◽  
Vol 1314 ◽  
Author(s):  
Changwook Jeong ◽  
Gerhard Klimeck ◽  
Mark Lundstrom

ABSTRACTWe use a state-of-the-art non-equilibrium quantum transport simulation code, NEMO-1D, to address the device physics and performance benchmarking of cross-plane superlattice Peltier coolers. Our findings show quantitatively how barriers in cross-plane superlattices degrade the electrical performance, i.e. power factor. The performance of an In0.53Ga0.47As/In0.52Al0.48As cross-plane SL Peltier cooler is lower than that of either a bulk In0.53Ga0.47As or bulk In0.52Al0.48As device, mainly due to quantum mechanical effects. We find that a cross-plane SL device has a Seebeck coefficient vs. conductance tradeoff that is no better than that of a bulk device. The effects of tunneling and phase coherence between multi barriers are examined. It is shown that tunneling, SL contacts, and coherency only produce oscillatory behavior of Seebeck coefficient vs. conductance without a significant gain in PF. The overall TE device performance is, therefore, a compromise between the enhanced Seebeck coefficient and degraded conductance.

2013 ◽  
Vol 52 (45) ◽  
pp. 16019-16031 ◽  
Author(s):  
M. Ghodrat ◽  
S. B. Kuang ◽  
A. B. Yu ◽  
A. Vince ◽  
G. D. Barnett ◽  
...  

Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 2
Author(s):  
Arash M. Shahidi ◽  
Theodore Hughes-Riley ◽  
Carlos Oliveira ◽  
Tilak Dias

Knitted electrodes are a key component to many electronic textiles including sensing devices, such as pressure sensors and heart rate monitors; therefore, it is essential to assess the electrical performance of these knitted electrodes under different mechanical loads to understand their performance during use. The electrical properties of the electrodes could change while deforming, due to an applied load, which could occur in the uniaxial direction (while stretched) or multiaxial direction (while compressed). The properties and performance of the electrodes could also change over time when rubbed against another surface due to the frictional force and generated heat. This work investigates the behavior of a knitted electrode under different loading conditions and after multiple abrasion cycles.


1996 ◽  
Vol 12 (3) ◽  
pp. 449-456 ◽  
Author(s):  
M. N. O'Sullivan ◽  
J. K. Krasnodebski ◽  
I. A. Waitz ◽  
E. M. Greitzer ◽  
C. S. Tan ◽  
...  

Author(s):  
Nadja Yang Meng ◽  
Karthikeyan K

Performance benchmarking and performance measurement are the fundamental principles of performance enhancement in the business sector. For businesses to enhance their performance in the modern competitive world, it is fundamental to know how to measure the performance level in business that also incorporates telling how they will performance after a change has been made. In case a business improvement has been made, the performance processes have to be evaluated. Performance measurements are also fundamental in the process of doing comparisons of performance levels between corporations. The best practices within the industry are evaluated by the businesses with desirable levels of the kind of performance measures being conducted. In that regard, it is fundamental if similar businesses applied the same collection of performance metrics. In this paper, the NETIAS performance measurement framework will be applied to accomplish the mission of evaluating performances in business by producing generic collection of performance metrics, which businesses can utilize to compare and measure their organizational activities.


Author(s):  
Masaki Iwasawa ◽  
Daisuke Namekata ◽  
Ryo Sakamoto ◽  
Takashi Nakamura ◽  
Yasuyuki Kimura ◽  
...  

In this paper, we report the implementation and measured performance of our extreme-scale whole planetary ring simulation code on Sunway TaihuLight and two PEZY-SC2 systems: Shoubu System B and Gyoukou. The numerical algorithm is the parallel Barnes-Hut tree algorithm, which has been used in many large-scale astrophysical particle-based simulations. Our implementation is based on our FDPS framework. However, the extremely large numbers of cores of the systems used (10 M on TaihuLight and 16 M on Gyoukou) and their relatively poor memory and network bandwidth pose new challenges. We describe the new algorithms introduced to achieve high efficiency on machines with low memory bandwidth. The measured performance is 47.9, 10.6 PF, and 1.01PF on TaihuLight, Gyoukou and Shoubu System B (efficiency 40%, 23.5% and 35.5%). The current code is developed for the simulation of planetary rings, but most of the new algorithms are useful for other simulations, and are now available in the FDPS framework.


Sign in / Sign up

Export Citation Format

Share Document