New Dynamic Air-Brush Technique for SWCNTs Deposition: Application to Fabrication of CNTFETs for Electronics and Gas Sensing

2011 ◽  
Vol 1283 ◽  
Author(s):  
P. Bondavalli ◽  
L. Gorintin ◽  
P. Legagneux ◽  
J.P. Simonato ◽  
L. Cailler

ABSTRACTThis contribution deals with Carbon Nanotubes Field Effect transistors (CNTFETs) based gas sensors fabricated using a completely new dynamic spray based technique (patented) for SWCNTs deposition. The extreme novelty is that our technique is compatible with large surfaces, flexible substrates and allows to fabricate high performances transistors exploiting the percolation effect of the SWCNTs networks achieved with extremely reproducible characteristics. Recently, we have been able to achieve extremely selective measurement of NO2, NH3 and CO using four CNTFETS fabricated using different metals as electrodes, exploiting the specific interaction between gas and metal/SWCNT junctions. In this way we have identify an electronic fingerprinting of the gas detected. The response time is evaluated at less than 30sec.

2009 ◽  
Vol 1204 ◽  
Author(s):  
Paolo Bondavalli ◽  
Louis Gorintin ◽  
Pierre Legagneux ◽  
Didier Pribat ◽  
Laurent Caillier ◽  
...  

AbstractThe first paper showing the great potentiality of Carbon Nanotubes Field Effect transistors (CNTFETs) for gas sensing applications was published in 2000 [1]. It has been demonstrated that the performances of this kind of sensors are extremely interesting: a sensitivity of around 100ppt (e.g. for NO2 [2]) has been achieved in 2003 and several techniques to improve selectivity have been tested with very promising results [2]. The main issues that have not allowed, up to now, these devices to strike more largely the market of sensors, have been the lack of an industrial method to obtain low-cost devices, a demonstration of their selectivity in relevant environments and finally a deeper study on the effect of humidity and the possible solutions to reduce it. This contribution deals with CNTFETs based sensors fabricated using air-brush technique deposition on large surfaces. Compared to our last contribution [3], we have optimized the air-brush technique in order to obtain high performances transistors (Log(Ion)/Log(Ioff) ∼ 5/6) with highly reproducible characteristics : this is a key point for the industrial exploitation. We have developed a machine which allows us the dynamic deposition on heated substrates of the SWCNT solutions, improving dramatically the uniformity of the SWCNT mats. We have performed tests using different solvents that could be adapted as a function of the substrates (e.g. flexible substrates). Moreover these transistors have been achieved using different metal electrodes (patented approach [4]) in order to improve selectivity. Results of tests using NO2, NH3 with concentrations between ∼ 1ppm and 10ppm will be shown during the meeting.


2010 ◽  
Vol 1253 ◽  
Author(s):  
Louis Gorintin ◽  
Paolo Bondavalli ◽  
pierre legagneux ◽  
Marc Chatelet

AbstractThe first paper showing the great potentiality of Carbon Nanotubes Field Effect transistors (CNTFETs) for gas sensing applications was published in 2000 [1]. It has been demonstrated that the performances of this kind of sensors are extremely interesting : a sensitivity of around 100ppt (e.g. for NO2 [2]) has been achieved in 2003 and several techniques to improve selectivity have been tested with very promising results [2]. The main issues that have not allowed, up to now, these devices to strike more largely the market of sensors, have been the lack of an industrial method to obtain low-cost devices, a demonstration of their selectivity in relevant environments and finally a deeper study on the effect of humidity and the possible solutions to reduce it. This contribution deals with CNTFETs based sensors fabricated using air-brush technique deposition on large surfaces. Compared to our last contribution [3], we have optimized the air-brush technique in order to obtain high performances transistors (Log(Ion)/ Log(Ioff) ~ 5/6) with highly reproducible characteristics : this is a key point for the industrial exploitation. We have developed a machine which allows us the dynamic deposition on heated substrates of the SWCNT solutions, improving dramatically the uniformity of the SWCNT mats. We have performed tests using different solvents that could be adapted as a function of the substrates (e.g. flexible substrates). Moreover these transistors have been achieved using different metal electrodes (patented approach [4]) in order to improve selectivity. Results of tests using NO2, NH3 with concentrations between ~ 1ppm and 10ppm will be shown during the meeting.


2009 ◽  
Vol 13 (01) ◽  
pp. 84-91 ◽  
Author(s):  
Marcel Bouvet ◽  
Vicente Parra ◽  
Clémentine Locatelli ◽  
Hui Xiong

Phthalocyanines are organic-based materials which have attracted a lot of research in recent times. In the field of sensors, they present interesting and valuable potentialities as sensing elements for real gas sensor applications. In the present article, and taking some of our experiments as representative examples, we review the different ways of transduction applied to such applications. Some of the new tendencies and transducers for gas sensing based on phthalocyanine derivatives are also reported. Among them, electrical transduction (resistors, field-effect transistors, diodes, etc.) has been, historically, the most commonly exploited way for the detection and/or quantification of gas pollutants, vapors and aromas, according to the conducting behavior of phthalocyanines. We will focus precisely on these systems.


2021 ◽  
Author(s):  
Марина Евгеньевна Сычева ◽  
Светлана Анатольевна Микаева

В статье рассмотрены основные типы CNTFET транзисторов, изготовленных на углеродных нанотрубках. Представлена классификация, особенности конструкции и основные этапы технологии изготовления CNTFET транзисторов. Полевые транзисторы из углеродных нанотрубок (CNTFET) являются перспективными наноразмерными устройствами для реализации высокопроизводительных схем с очень плотной и низкой мощностью. The article considers the main types of CNTFET transistors made on carbon nanotubes. The classification, design features and the main stages of the CNTFET transistor manufacturing technology are presented. Carbon nanotube field effect transistors (CNTFET) are promising nanoscale devices for implementing high-performance circuits with very dense and low power.


2014 ◽  
Vol 16 (22) ◽  
pp. 10861-10865 ◽  
Author(s):  
Jia Gao ◽  
Yueh-Lin Loo

Presorted, semiconducting carbon nanotubes in the channels of field-effect transistors undergo simultaneous p-doping and oxidation during ozone exposure.


2006 ◽  
Vol 45 (4B) ◽  
pp. 3680-3685 ◽  
Author(s):  
Bae-Horng Chen ◽  
Jeng-Hua Wei ◽  
Po-Yuan Lo ◽  
Zing-Way Pei ◽  
Tien-Sheng Chao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document