Organization of Nanowires into Complex 3D Assemblies by Template Electrodeposition

2012 ◽  
Vol 1439 ◽  
pp. 5-10
Author(s):  
Markus Rauber ◽  
Wolfgang Ensinger

ABSTRACTTo realize applications based on nanowires, the development of methods that allow the organization of nanostructures into integrated arrangements is crucial. While many different methods exist, the direct synthesis of complex nanowire structures is one of the most suitable approaches to efficiently connect numerous nanostructures to the macroscopic world. The fabrication of various 3D nanowire assemblies including arrays, networks, and hierarchical structures by combining specifically designed template materials with electrochemical deposition is demonstrated. The ion track template method is extended to create more complex structures by changing template production and electrodeposition parameters. In contrast to current synthesis routes, it is possible to independently control many of the parameters defining both (i) characteristics of individual nanowires (including dimensions and composition) and (ii) the arrangement of the nanoscale building blocks into nanowire assemblies determined by nanowire orientation and integration level. Results that highlight the benefits arising from the design of advanced 3D nanowire architectures are presented.

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4415
Author(s):  
Sergey A. Usachev ◽  
Diana I. Nigamatova ◽  
Daria K. Mysik ◽  
Nikita A. Naumov ◽  
Dmitrii L. Obydennov ◽  
...  

A convenient and general method for the direct synthesis of 2-aryl-6-(trifluoromethyl)-4-pyrones and 2-aryl-5-bromo-6-(trifluoromethyl)-4-pyrones has been developed on the basis of one-pot oxidative cyclization of (E)-6-aryl-1,1,1-trifluorohex-5-ene-2,4-diones via a bromination/dehydrobromination approach. This strategy was also applied for the preparation of 2-phenyl-6-polyfluoroalkyl-4-pyrones and their 5-bromo derivatives. Conditions of chemoselective enediones bromination were found and the key intermediates of the cyclization of bromo-derivatives to 4-pyrones were characterized. Synthetic application of the prepared 4-pyrones has been demonstrated for the construction of biologically important CF3-bearing azaheterocycles, such as pyrazoles, pyridones, and triazoles.


Author(s):  
William Wedley

Saaty’s 1977 article is his first comprehensive publication of the ideas behind AHP. He reveals his creativity in a new method for ratio measurement that includes pairwise ratio matrices, derived ratio scales from those matrices, and checks on the consistency of data.  His ingenuity in using ratio measures is revealed by the use of hierarchical structures to display priorities and then a rescaling of them in a manner that allows synthesis for a composite ratio result. Face validity is provided by many supporting examples and mathematical validity is provided by the solution to many theorems. https://doi.org/10.13033/ijahp.v9i3.532


Polymer ◽  
2012 ◽  
Vol 53 (26) ◽  
pp. 6045-6052 ◽  
Author(s):  
Patrick van Rijn ◽  
Nathalie C. Mougin ◽  
Alexander Böker

2009 ◽  
Vol 01 (01) ◽  
pp. 85-112 ◽  
Author(s):  
ZHAO QIN ◽  
STEVEN CRANFORD ◽  
THEODOR ACKBAROW ◽  
MARKUS J BUEHLER

An abundant trait of biological protein materials are hierarchical nanostructures, ranging through atomistic, molecular to macroscopic scales. By utilizing the recently developed Hierarchical Bell Model, here we show that the use of hierarchical structures leads to an extended physical dimension in the material design space that resolves the conflict between disparate material properties such as strength and robustness, a limitation faced by many synthetic materials. We report materiomics studies in which we combine a large number of alpha-helical elements in all possible hierarchical combinations and measure their performance in the strength-robustness space while keeping the total material use constant. We find that for a large number of constitutive elements, most random structural combinations of elements (> 98%) lead to either high strength or high robustness, reflecting the so-called banana-curve performance in which strength and robustness are mutually exclusive properties. This banana-curve type behavior is common to most engineered materials. In contrast, for few, very specific types of combinations of the elements in hierarchies (< 2%) it is possible to maintain high strength at high robustness levels. This behavior is reminiscent of naturally observed material performance in biological materials, suggesting that the existence of particular hierarchical structures facilitates a fundamental change of the material performance. The results suggest that biological materials may have developed under evolutionary pressure to yield materials with multiple objectives, such as high strength and high robustness, a trait that can be achieved by utilization of hierarchical structures. Our results indicate that both the formation of hierarchies and the assembly of specific hierarchical structures play a crucial role in achieving these mechanical traits. Our findings may enable the development of self-assembled de novo bioinspired nanomaterials based on peptide and protein building blocks.


2021 ◽  
Author(s):  
Alberto de Juan ◽  
David Lozano ◽  
Andrew Heard ◽  
Michael Jinks ◽  
Jorge Meijide Suarez ◽  
...  

We have serendipitously discovered a combination of reaction partners that function as a “chiral interlocking auxiliary” to both orientate a macrocycle and, effectively, load it onto a new axle. We demonstrate the potential of this finding through the synthesis of a number of targets in high enantiopurity, without separation of stereoisomers, including examples whose axles lack any functional groups that would allow their direct synthesis by other means, so called “impossible” rotaxanes. Intriguingly, by varying the order of bond forming steps, we can effectively choose which end of an axle the macrocycle is loaded onto, allowing the synthesis of both hands of a single target using the same reactions and building blocks.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2507
Author(s):  
Babak Adeli ◽  
Fariborz Taghipour

Binary and ternary oxynitride solid alloys were studied extensively in the past decade due to their wide spectrum of applications, as well as their peculiar characteristics when compared to their bulk counterparts. Direct bottom-up synthesis of one-dimensional oxynitrides through solution-based routes cannot be realized because nitridation strategies are limited to high-temperature solid-state ammonolysis. Further, the facile fabrication of oxynitride thin films through vapor phase strategies has remained extremely challenging due to the low vapor pressure of gaseous building blocks at atmospheric pressure. Here, we present a direct and scalable catalytic vapor–liquid–solid epitaxy (VLSE) route for the fabrication of oxynitride solid solution nanowires from their oxide precursors through enhancing the local mass transfer flux of vapor deposition. For the model oxynitride material, we investigated the fabrication of gallium nitride and zinc oxide oxynitride solid solution (GaN:ZnO) thin film. GaN:ZnO nanowires were synthesized directly at atmospheric pressure, unlike the methods reported in the literature, which involved multiple-step processing and/or vacuum operating conditions. Moreover, the dimensions (i.e., diameters and length) of the synthesized nanowires were tailored within a wide range.


2016 ◽  
Vol 191 ◽  
pp. 89-104 ◽  
Author(s):  
Alina Kirillova ◽  
Georgi Stoychev ◽  
Alla Synytska

The exploitation of colloidal building blocks with morphological and functional anisotropy facilitates the generation of complex structures with unique properties, which are not exhibited by isotropic particle assemblies. Herein, we demonstrate an easy and scalable bottom-up approach for the programmed assembly of hairy oppositely charged homogeneously decorated and Janus particles based on electrostatic interactions mediated by polyelectrolytes grafted onto their surface. Two different assembly routes are proposed depending on the target structures: raspberry-like/half-raspberry-like or dumbbell-like micro-clusters. Ultimately, stable symmetric and asymmetric micro-structures could be obtained in a well-controlled manner for the homogeneous–homogeneous and homogeneous–Janus particle assemblies, respectively. The spatially separated functionalities of the asymmetric Janus particle-based micro-clusters allow their further assembly into complex hierarchical constructs, which may potentially lead to the design of materials with tailored plasmonics and optical properties.


1991 ◽  
Vol 255 ◽  
Author(s):  
Witold Brostow ◽  
Michael Hess

AbstractHierarchical structures are possible in polymer liquid crystals (PLCs) since each molecule contains at least two kinds of building blocks that are not homeomorphic to each other. We discuss some examples of molecular structures and phase structures of monomer liquid crystals (MLCs) and PLCs: smectic phases formed by interdigitated MLC molecules; PLC molecule classification based on increasing complexity – and its consequences on properties of the materials; and formation and phase structures of LC-rich islands in PLCs and in PLC blends. Some rules pertaining to hierarchical structures are formulated. The knowledge of hierarchies is neccessary – but not sufficient – for intelligent procesing of PLCs and their blends and for achieving properties defined in advance. Computer modelling represents another important element of building materials to order.


Sign in / Sign up

Export Citation Format

Share Document