3-dimensional imaging of dislocation microstructures by electron beams

2012 ◽  
Vol 1421 ◽  
Author(s):  
J. S. Barnard ◽  
J. H. Sharp ◽  
S. Hata ◽  
M. Mitsuhara ◽  
K. Kaneko ◽  
...  

ABSTRACTWe review the progress in the electron tomography of dislocation microstructures in the transmission electron microscope (TEM). Dislocation contrast is visible both in conventional TEM and scanning TEM (STEM) modes and, despite the complicated intensity variations, dislocation contrast can be isolated using computational filtering techniques prior to reconstruction. We find that STEM annular dark-field (STEM-ADF) imaging offers significant advantages in terms of dislocation contrast and background artifacts. We present several examples, both in semiconducting and metallic systems, illustrating the properties of 3D dislocations. We present the high-angle triple-axis (HATA) specimen holder where the diffraction condition can be chosen at will and dislocation tomograms of multiple reflections can be combined. 3D dislocations are analyzed in terms of dislocation density and dislocation nodal structures. Several avenues of study are suggested that may exploit the 3D dislocation data.

Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
N. Baladés ◽  
D. L. Sales ◽  
M. Herrera ◽  
A. M. Raya ◽  
J. C. Hernández-Garrido ◽  
...  

This paper explores the capability of scanning transmission electron microscopy (STEM) techniques in determining the dispersion degree of graphene layers within the carbon matrix by using simulated high-angle annular dark-field (HAADF) images. Results ensure that unmarked graphene layers are only detectable if their orientation is parallel to the microscope beam. Additionally, gold-marked graphene layers allow evaluating the dispersion degree in structural composites. Moreover, electron tomography has been demonstrated to provide truthfully 3D distribution of the graphene sheets inside the matrix when an appropriate reconstruction algorithm and 2D projections including channelling effect are used.


2008 ◽  
Vol 1107 ◽  
Author(s):  
G. Möbus ◽  
G. Yang ◽  
Z. Saghi ◽  
X. Xu ◽  
R.J. Hand ◽  
...  

AbstractCharacterization of glasses and glass nanocomposites using modern transmission electron microscopy techniques is demonstrated. Techniques used include: (i) high-angle-annular dark field STEM for imaging of nanocomposites, (ii) electron tomography for 3D reconstruction and quantification of nanoparticle volume fractions, and (iii) fine structure electron energy loss spectroscopy for evaluation of boron coordination. Precipitation of CeO2nanoparticles in borosilicate glasses is examined as a function of glass composition and redox partner elements. A large increase in the solubility of Ce is found for compositions where Ce retains +IV valence in the glass. Irradiation experiments with electrons and λ-rays are summarized and the degree of damage is compared by using changes in the boron K-edge fine structure, which allows the gradual transition from BO4to BO3coordination to be followed.


2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S28-S28
Author(s):  
Andrey Moiseenko ◽  
Lubov Kozlovskaya ◽  
Aydar Ishmukhametov ◽  
Alexey Egorov ◽  
Konstantin Shaitan ◽  
...  

Background: The severe COVID-19 pandemic started in December 2019 is caused by the SARS-CoV-2 virus. The SARS-CoV-2 virion consists of a positive-sense single-stranded RNA (ssRNA), bound with the nucleocapsid N protein and surrounded by a lipid membrane with the embedded glycoprotein S and the transmembrane proteins M and E. The structure of inactivated SARS-CoV-2 virions is crucial for the development of vaccine-induced immunity. Here we characterized the nucleic acid distribution within β-propiolactone inactivated whole-virion SARS-CoV-2 vaccine CoviVac. Methods: We used EELS to verify the presence of phosphorus (P) inside the β-propiolactone inactivated virions. Electron microscopy was performed with a JEM-2100 200kV LaB6 transmission electron microscope (JEOL, Japan) equipped with a Gatan GIF Quantum ER energy filter (Gatan, USA) operating in spectrometer mode, along with a High-Angle Annular Dark-Field (HAADF) scanning transmission electron microscopy (STEM) detector. The cooling holder model 21090 (JEOL, Japan) was operated at -182 °С to reduce the contamination effects and to enhance the specimen's stability under the electron beam. We employ a negative stain with 2% (NH4)2MoO4 rather than uranyl acetate since the Uranium O4,5 peak (edge at 96 eV) is close to the P L2,3 peak (edge at 132 eV) and interferes with the accurate background interpolation. Results: The intensity under the P peak after the background subtraction was used for STEM-EELS mapping. We observed the characteristic P signal from the inner part of the virion but not from the bare grid. The observed P signal could arise from either viral RNA or lipids of the virus membrane, and since the P signal is highly heterogeneous, it is more likely to originate from RNA. Conclusion: So far, phosphorous mapping in individual virions using EELS was done only with samples prepared using highly specialized techniques, which minimized the sample thickness, including the substrate thickness. Here, we performed elemental mapping on ordinary samples of whole viruses. All investigated virions contained P signal, but its spatial distribution and intensity differed significantly. This clearly reflects the non-even distribution of the genomic RNA, which, apparently, accompanies their inner heterogeneity, previously observed by in-situ cryo-electron tomography.


2009 ◽  
Vol 24 (8) ◽  
pp. 2596-2604 ◽  
Author(s):  
Sašo Šturm ◽  
Makoto Shiojiri ◽  
Miran Čeh

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.


2014 ◽  
Vol 47 (5) ◽  
pp. 1729-1735 ◽  
Author(s):  
Xin Nie ◽  
Yimin Guan ◽  
Dongshan Zhao ◽  
Yu Liu ◽  
Jianian Gui ◽  
...  

The crystallographic orientation relationships (ORs) of precipitated β-Mg2Sn particles in Mg–9.76 wt% Sn alloy aged at 573 K for 5 h, corresponding to its peak hardness, were investigated by advanced transmission electron microscopy (TEM). OR-3 of (110)β//(0001)αand [\overline 111]β//[1\overline 210]αand OR-4 of (110)β//(0001)αand [001]β//[2\overline 1\overline 10]αare the key ORs of β-Mg2Sn particles in the alloy. The proportions of β-Mg2Sn particles exhibiting OR-3 and OR-4 were determined as 75.1 and 24.3%, respectively. Crystallographic factors determined the predominance of OR-3 in the precipitated β-Mg2Sn particles. This mechanism was analyzed by a three-dimensional invariant line model constructed using a transformation matrix in reciprocal space. Models of the interface of precipitated β-Mg2Sn and the α-Mg matrix were constructedviahigh-resolution TEM and atomic resolution high-angle annular dark-field scanning TEM.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4531
Author(s):  
Maria Meledina ◽  
Geert Watson ◽  
Alexander Meledin ◽  
Pascal Van Der Voort ◽  
Joachim Mayer ◽  
...  

Ru catalyst nanoparticles were encapsulated into the pores of a Cr-based metal-organic framework (MOF)—MIL-101. The obtained material, as well as the non-loaded MIL-101, were investigated down to the atomic scale by annular dark-field scanning transmission electron microscopy using low dose conditions and fast image acquisition. The results directly show that the used wet chemistry loading approach is well-fitted for the accurate embedding of the individual catalyst nanoparticles into the cages of the MIL-101. The MIL-101 host material remains crystalline after the loading procedure, and the encapsulated Ru nanoparticles have a metallic nature. Annular dark field scanning transmission electron microscopy, combined with EDX mapping, is a perfect tool to directly characterize both the embedded nanoparticles and the loaded nanoscale MOFs. The resulting nanostructure of the material is promising because the Ru nanoparticles hosted in the MIL-101 pores are prevented from agglomeration—the stability and lifetime of the catalyst could be improved.


Sign in / Sign up

Export Citation Format

Share Document