Preparation and Characterization of Pb(Zr,Ti)O3 films prepared by a modified sol-gel route

2012 ◽  
Vol 1449 ◽  
Author(s):  
Dan Jiang ◽  
Chen Zhao ◽  
Shundong Bu ◽  
Jinrong Cheng

ABSTRACTPb(Zr0.53Ti0.47)O3 (PZT) films have been fabricated on stainless steel substrates by a Polyvinylpirrolidone (PVP) modified sol-gel route. The single layer of about 0.26 μm was achieved by using the PVP-modified PZT sol, and Crack-free PZT films with thickness of up to 2.37 μm were fabricated by repeating the deposition process. The variations in crystallite orientation, microstructure, dielectric and ferroelectric properties of PZT films were investigated as a function of film thickness. Our results indicate that PZT films prepared on stainless steel substrates maintain good dielectric and ferroelectric properties.

1999 ◽  
Vol 14 (5) ◽  
pp. 1852-1859 ◽  
Author(s):  
Rajnish Kurchania ◽  
Steven J. Milne

Films of nominal composition Pb(Zr0.53Ti0.47)O3 (PZT) in the thickness range 0.25−10 μm have been fabricated on Pt/Ti/SiO2/Si substrates using a propanediol-based sol-gel route. The spun-on coatings were prefired at 350 and 600 °C between successive depositions before firing the multilayer stack at 700 °C for 15 min. The variations in crystallite orientation, microstructure, and dielectric and ferroelectric properties were determined as a function of film thickness. For a constant applied field of 150 kV cm−1, remanent polarization decreased progressively from 35 to 17 μC cm−2 as film thickness decreased in the range 10–0.25 μm; values of coercive field were reasonably constant, 18–19 kV cm−1, for films between 2 and 10 μm, but increased sharply below 2 μm, reaching 46 kV cm−1 for a 0.25 μm film. Relative permittivity (εr) decreased from approximately 1400 to approximately 940 with most of the reduction occurring in films less than 2 μm in thickness. These trends are discussed in terms of the presumed influence of interfacial phenomena on the measured electrical response.


2012 ◽  
Vol 1449 ◽  
Author(s):  
Chen Zhao ◽  
Dan Jiang ◽  
Shundong Bu ◽  
Jinrong Cheng

ABSTRACTFerroelectric 0.7BiFeO3-0.3PbTiO3 (BFO-PT) films were deposited on stainless steel substrates by the sol-gel method. A thin layer of PbTiO3 (PT) was introduced between the substrates and BFO-PT films in order to decrease the annealing temperature of BFO-PT films. X-ray diffraction analysis reveals that BFO-PT films could be well crystallized into the perovskite structure at about 575 oC. Scanning electron microscope (SEM) images show that BFO-PT thin films have grain size of about 50∼60 nm. Our results indicated BFO-PT films deposited on stainless steel substrates maintained the excellent ferroelectric properties with remnant polarization of about 40∼50 μC/cm2.


2014 ◽  
Vol 121 ◽  
pp. 20-29 ◽  
Author(s):  
Tim Van Gestel ◽  
Felix Hauler ◽  
Martin Bram ◽  
Wilhelm A. Meulenberg ◽  
Hans Peter Buchkremer

2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
E. Barrera-Calva ◽  
J. Méndez-Vivar ◽  
M. Ortega-López ◽  
L. Huerta-Arcos ◽  
J. Morales-Corona ◽  
...  

Silica-copper oxide (silica-CuO) composite thin films were prepared by a dipping sol-gel route using ethanolic solutions comprised TEOS and a copper-propionate complex. Sols with different TEOS/Cu-propionate (Si/Cu) molar ratios were prepared and applied on stainless steel substrates using dipping process. During the annealing process, copper-propionate complexes developed into particulate polycrystalline CuO dispersed in a partially crystallized silica matrix, as indicated by the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The gel thermal analysis revealed that the prepared material might be stable up to400°C. The silica-CuO/stainless steel system was characterized as a selective absorber surface and its solar selectivity parameters, absorptance (α), and emittance (ε) were evaluated from UV-NIR reflectance data. The solar parameters of such a system were mostly affected by the thickness and phase composition of theSiO2-CuO film. Interestingly, the best solar parameters (α= 0.92 andε= 0.2) were associated to the thinnest films, which comprised a CuO-Cu2Omixture immersed in the silica matrix, as indicated by XPS.


Author(s):  
R.X. Fu ◽  
R. Mamazza ◽  
T. S. Zheleva ◽  
K.W. Kirchner ◽  
B. H. Piekarski

2002 ◽  
Vol 748 ◽  
Author(s):  
M. Jain ◽  
A. Savvinov ◽  
P. S. Dobal ◽  
S. B. Majumder ◽  
R. S. Katiyar ◽  
...  

ABSTRACTIn this work we present the structural, and vibrational properties of ferroelectric Pb1-xSrxTiO3 (PST). Thin films of PST were prepared by using sol-gel technique for various compositions with x values ranging from 0.0–1.0. Respective compositions were also prepared in ceramic and powder forms using sol-gel and solid-state reaction methods. X-ray diffraction was used for the structural characterization of these materials. Raman spectroscopy was utilized to study the phases and lattice vibrational modes, especially the soft mode in PST compositions. The temperature dependence of the soft mode frequency for different PST compositions revealed that the phase transition temperatures increased with increasing Pb contents in PST system. Ferroelectric properties of the films were correlated with the substitution-induced changes in the material.


Sign in / Sign up

Export Citation Format

Share Document